COMPARATIVE ESTIMATION OF RESISTANCE OF HYDROBIONTS UNDER EXTERNAL HYPOXIA AND ANOXIA CONDITIONS

Authors

  • T. I. Andreenko

Keywords:

hypoxia, anoxia, metabolism, hydrobionts, molluscs, adaptation strategies

Abstract

The information about the comparative resistance of hydrobionts to oxygen deficiency, physiological and metabolic aspects of adaptation of marine organisms to hypoxia and anoxia is presented. Comparing with other groups of organisms, relatively low sensitivity and high resistance to hypoxia was observed in mollusks and priapulids. In anoxic medium mollusks are the most resistant to anoxia among the invertebrate animals as well. Polychaete demonstrate lower resistance and the lowest resistance is revealed in crustaceans. It is shown that the survival of aquatic organisms during limited time in anoxic conditions depends on their tolerance to temperature of the environment, size and activity. It is noted that among the invertebrate animals the most resistant to anoxia are mollusks as well. Polychaete demonstrate lower resistance and the lowest resistance is revealed in crustaceans. Strategies of metabolism of sea inhabitants under hypoxia and anoxia conditions are examined. It is shown that resistant to anoxia mollusks have considerable resources of glycogen and aspartate in tissues and able to maintain aerobic metabolism orientation at extremely low concentration of oxygen in water.

References

Алякринская И. О. Устойчивость к обсыханию водных моллюсков // Известия АН. Сер. Биол. – 2004. – № 3. – С. 362–374.

Горомосова С. А., Шапиро А. З.. Основные черты биохимии энергетического обмена мидий – М.: Легкая и пищевая промышленность, 1984. – 120 с.

Колючкина Г. А., Исмаилов А. Д. Параметры экстрапаллиальной жидкости двустворчатых моллюсков - неспецифические биомаркеры кратко-временного загрязнения водной среды // Океанология. – 2007. – 47, № 2. – С. 233–240.

Константинов А. С. Общая гидробиология. – М.: Высшая школа, 1986. – 206 с.

Фащук Д. Я., Самышев Э. З., Себах Л. К., Шляхов В. А. Формы антропогенного воздействия на экосистему Черного моря и ее состояние в современных условиях / Д. Я. Фащук // Экология моря. – 1991. – Вып. 38. – С. 19–27.

Фокина Н. Н., Нефедова З. А., Немова Н. Н. Биохимические адаптации морских двустворчатых моллюсков к аноксии (обзор) // Труды КарНЦ РАН. – 2011. – № 3. – С.121–130.

Хочачка П., Сомеро Дж. Биохимическая адаптация. – М.: Мир, 1988. – 568 с.

Abele D. Toxic oxygen: The radical life-giver // Nature. – 2002. – 420, № 6911. – P. 27–34.

Ali F., Nakamura K. Effect of temperature and relative humidity on the tolerance of the Japanese clam, Ruditapes philippinarum (Adams & Reeve), to air exposure //Aquaculture Research. – 2002. – 30, № 9. – P. 629 – 636.

Anderson S. J., Taylor A. C., Atkinson R. J. A. Anaerobic metabolism during anoxia in the burrowing shrimp Calocaris macandreae Bell (Crustacea: Thalassinidea) // Comp. Biochem. Physiol. - Part A: Physiol. – 1994. – 108, № 4. – P. 515–522.

Bestwick B. W., Robbins I. J., Warrem L. M. Metabolic adaptations of the intertidal polychaete Cirriformia tentaculata to life in an oxygen-sink environment // J. Exp. Mar. Biol. Ecol. – 1989. – 125. – P. 193 – 202.

Boutilier R. G., Boutilier R. G., West T. G., Pogson G. H., Mesa K. A., Wells J., Wells M. J. Nautilus and the art of metabolic maintenance / R.G. Boutilier // Nature. – 1996. – 382, № 6591. – P. 534 – 536.

Brooks S. P. J., de Zwaan A., van den Thillart G., Cortesi C. O. P., Storey K. B. Differential survival of Venus gallina and Scapharca inaequivalvis during anoxic stress: Covalent modification of phosphofructokinase and glycogen phosphorylase during anoxia // J. Comp. Physiol., B. – 1991. – 161, № 2. – P. 207–212.

Burnett L. E., Stickle W. B. Physiological Responses to Hypoxia. Coastal Hypoxia: Consequences for Living Resources and Ecosystems. // Coastal and Estuarine Studies. – 2001. – 57. – P. 101–114.

Carroll J.L. Strategies of anaerobiosis in New Zealand infaunal bivalves: adaptations to environmental and functional hypoxia // N. Z. J. Mar. Freshwater Res. – 1995. – 29. – P. 137–146.

David E., Tanguy A., Pichavant K., Moraga D. Response of the Pacific oyster Crassostrea gigas to hypoxia exposure under experimental conditions // FEBS Journal. – 2005. – 272. – P. 5635–5652.

De Zwaan A. Carbohydrate catabolism in bivalves. // The Mollusca. New York: Acad. Press. – 1983. – 1. – P. 138–175.

De Zwaan A., Roos J., Carpene E., Cattani O. Anaerobic metabolism of erythrocytes of the arcid clam Scapharca inaequivalvis (Bruguiere): Effects of cadmium. // Comp. Biochem. Physiol. – 1991. – 98 B, №1. – P. 169–175.

De Zwaan A., Schaub B., Babarro M. F. J. Anoxic survival of Macoma balthica: the effect of antibiotics, molybdate and sulphide // J. Exp. Mar. Biol. Ecol. – 2001. – 256, № 2. – P. 241–251.

De Zwaan A., Babarroa M. F. J., Monarib M., Cattani O. Anoxic survival potential of bivalves: (arte) facts // Comp. Biochem. Physiol. - Part A: Mol. Integ. Physiol. –2002. – 131, № 3. – P. 615–624.

Denise L. B., Adamack A., Rose K. A., Kolesar E. S., Decker M. B., Purcell E. J., Keister E. J., Co-wan. H. J. The Pattern and Influence of Low Dissolved Oxygen in the Patuxent River, a Seasonally Hypoxic Estuary Estuaries // J. Exp. Mar. Bio. Ecol. – 2003. – 26, № 2A. – P. 280–297.

Fields J. H. A. Alternatives to lactic acid: Possible advantages // J. Exp. zool. – 1983. – 228, № 3. – P. 445–457.

Gäde G. The energy metabolism of the foot muscle of the jumping cockle Cardium tuberculatum: sustained anoxia versus muscular activity // J. Com. Physiol. – 1980. – 137 B. – P. 177–182.

Gaufin A. R. Water quality requirements of aquatic insects // EPA. –1973. – 3. – P. 660–663.

Grieshaber M. K., Hardewig I., Kreutzer U., Schneider A. Hypoxia and sulfide tolerance in some marine invertebrates // G. Fischer-verlag. – 1992. – 85, № 2. – P. 55–76.

Hall F.G. The influence of varying oxygen tensions upon the rate of oxygen consumption in marine fishes // Amer. J. Physiol. – 1929. – 88, № 2. – P. 282 – 292.

Henriksson R. Influence of pollution on the bottom fauna of the Sound (Oresund) // Oikos. – 1969. – 20. – P. 507-523.

Hoback W. W., Barnhart M. C. Lethal limits and sublethal effects of hypoxia on the amphipod Gammarus preudolimnaens // J. N. Am. Benthol. Soc. – 1996. – 15, № 1. – P. 117–126.

Hochachka P.W., Fields J. H. A. Arginine, glutamate and praline as subsrate for oxidation and for glycogenesis in cephalopod tissues // Pacific Science. – 1983. – 36. – P. 325–336.

Hochachka P. W. Defense strategies against hypoxia and hypothermia // Science. – 1986. – 231. – P. 234–241.

Jeremy D., Steven C. H. Metabolic depression is delayed and mitochondrial impairment averted during prolonged anoxia in the ghost shrimp, Lepidophthalmus louisianensis (Schmitt, 1935) / J. Exp. Mar. Biol. Ecol. – 2009. – 376, № 2. – P. 85 – 93.

José M. F , Zwaan A. Babarro. Influence of abiotic factors on bacterial proliferation and anoxic survival of the sea mussel Mytilus edulis L. / M. F. Babarro José, A. de Zwaan // J. Exp. Mar. Biol. Ecol. – 2002. – 273, № 1. – P. 33 – 49.

José M.F., Zwaan A. Babarro. Anaerobic survival potential of four bivalves from different habitats. A comparative survey / M.F. Babarro José, A. de Zwaana // Comp. Biochem. Physiol. – 2008. – Part A: Mol. Integ. Physiol. – 151, № 1. – P. 108–113.

Joyce S. The dead zones: oxygen-starved coastal waters // Environ. Health Perspective. – 2000. – 108, № 3. – P. A120–A125.

Kang J.C., Matsuda O. Tolerance of anoxia and hydrogen sulfide by benthic crustaceans Portunus trituberculatus, Metapenaeus monoceros and Macrobrachium nipponense // J. Fac. Appl. Biol. Sci. – 1993. – 32. – P. 71–78.

Kapper M. A., Stickle W. B. Metabolic response of the estuarine gastropod Thais haemastoma to hypoxia // Physiol. Zool. – 1987. – 60. – P. 159–173.

Kreutzer U., Jue T. Metabolic response to oxygen limitation in Arenicola marina as determined with the super (1) H NMR signals of myoglobin // Comp. Biochem. Physiol. – 1998. – 120 A, № 1. – P. 127–132.

Kruse I. Population ecology and genetics of the polychaete Scoloplos armiger (Orbiniidae) [Электронный ресурс]. – Электрон. текстовые данные (806701 bytes) // Pol. Meeresforsch. xxx. – 2003 : http://www.awibremerhaven.de/Publications/Kru2002d. pdf Ber. ISSN 1618 – 3193.

Larade K., Storey K. Arrest of transcription following anoxic exposure in a marine mollusc // Mol. Cell. Biochem. – 2007. – 15. – P. 17–35.

Livingstone D. R., de Zwaan A., Leopold M., Marteyn E. Studies on the phylogenetic distribution of pyruvate oxidoreductase // Biochem. Syst. Ecol. –1983. – 11. – P. – 415–425.

Livingstone D. R. Origins and evolution of pathways of anaerobic metabolism in the animal kingdom // Amer. zoologist. – 1991. – 31. – P. 522–534.

Llanso R., Diaz R. J. Tolerance to low dissolved oxygen by the tubicolous polychaete Loimia medusa // J. Mar. Biol. – 1994. – 74. – P. 143–148.

Matthews M. A., McMahon R.F. Effect of temperature and temperature acclimation on survival of zebra mussels (Dreissena polymorpha) and Asian clams (Corbicula fluminea) under extreme hypoxia // J. Molluscan Stud. – 1999. – 65. – P. 317–325.

Meinardus G., Gade G. The pyruvate branch point in the anaerobic metabolism of the jumping cockle Cardium tuberculatum // Exp. Biol. – 1986. – 45. – P. 91–110.

Miller D.C., Poucher S. L., Coiro L. Determination of lethal dissolved oxygen levels for selected marine and estuarine fishes, crustaceans, and a bivalve // J. Mar. Biol. – 2002. – 140. – P. 287–296.

Monteiro P. M. S., Vanderplas A., Melice J., Florenchie P. Interannual hypoxia variability in a coastal upwelling system: Ocean–shelf exchange, climate and ecosystemstate implication // Deep-Sea Res. – 2008. – 1, № 55. – Р. 435–450.

Nebeker A. B. Effect of low dissolved oxygen on survival, growth, and reproduction of Daphnia, Hylalella, and Gammarus // Env.Tox.Chem. – 1992. – 11. – P. 373-379.

Nervant F., Mathieu C. R. Ventilators and locomotors activities in anoxia and subsequent recovery of epigcan and hypogex in crustaceans // Acad. Sci. – 1995. – 318. – P. 585-592.

Portner H. O., Farrell A. P. Physiology and Climate Change // Science. – 2008. – 322. – Р. 690–692.

Portner H. O. Oxygen and capacity limitation of thermal tolerance: a matrix for integrating climate related stressors in marine Ecosystems // J. Exp. Biol. – 2010. – 213. – Р. 881–893.

Rees B. B., Bowman J. A., Schulte P. M. Structure and sequence conservation of a putative hypoxia response element in the lactate dehydrogenase-B gene of Fundulus // Biol. Bull.. – 2001. – 200, №3. – Р. 247–51.

Santini G., Bruschini C., Pazzagli L., Pieraccini G., Moneti G., Chelazzi G. Metabolic responses of the limpet Patella caerulea (L.) to anoxia and dehydration // Comp. Biochem. Physiol. - Part A: Mol. Integr. Physiol. – 2001. – 130, № 1. – P. 1–8.

Shapiro A.Z. On the Content of Macroergic Compounds in Mussel Tissues under Normal and Hypoxic Conditions // J. Biol. Mor. –1981. – № 2. – P. 69–75.

Spicer J. I., Thornmasson M. A., Stromberg J. 0. Possessing a poor anaerobic capacity does not prevent the die1 vertical migration of Nordic krill Meganyctiphanes norvegica into hypoxic waters // Mar. Ecol. Prog. Ser. – 1999. – 185. – Р. 181–187.

Stickle W.B. Metabolic adaptation of several species of crustaceans and mollusks to hypoxia: Tolerance and micro calorimetric studies // Biol. Bull. – 1989. – 177. – P. 303–312.

Stramma L., Johnson G., Sprintall J., Mohrholz V. Expanding Oxygen-Minimum Zones in the tropical oceans // Science. – 2008. – 320. – Р. 655–658.

Theede H., Ponat A., Hiroki K., Schlieper C. Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulfide // Mar. Biol. –1969. – 2. – P. 325-337.

Vaquer-Sunyer R., Duarte C. M. Thresholds of hypoxia for marine biodiversity // P. Natl. Acad. Sci. USA. – 2008. –105, № 40. – Р. 15452–15457.

Vistisen B., Vistisen B Tolerance to low oxygen and sulfide in Amphiura filiformis and Ophiura albida (Echinodermata: Ophiuroidea) // Mar. Biol. –1997. – 128. – Р. 241 – 246.

Wu R. S. S. Hypoxia: from molecular responses to ecosystem responses // Mar. Poll. Bull. – 2002. – 45, № 1-12. – P. 35–45.

Zardi G. I., Nicastro K. R., Porri F., McQuaid C. D. Sand stress as a non-determinant of habitat segregation of indigenous (Perna perna) and invasive (Mytilus galloprovincialis) mussels in South Africa // J. Exp. Mar. Biol. Ecol. – 2003. – 300. – Р. 189–144.

Published

2023-05-12