SPATIAL ASSESSMENT OF WATER BLOOMS IN THE UKRAINIAN SECTOR OF THE NORTHWESTERN PART OF THE BLACK SEA
DOI:
https://doi.org/10.47143/1684-1557/2023.1-2.7Keywords:
environmental condition, eutrophication, northwestern part of the Black Sea, remote sensing data, geoinformation analysisAbstract
Using geoinformation systems, a spatial-statistical analysis of chlorophyll-a concentration distribution was conducted based on satellite observations in the waters of the northwestern part of the Black Sea during different hydrological years. The temporal dynamics of chlorophyll-a concentrations, associated with the influence of river discharge and other factors, were examined. Utilizing the databases of international online platforms, namely Copernicus Marine Service (CMEMS), Giovanni – NASA, Copernicus Climate Change, and the analytical capabilities of the ESA SNAP software platform, correlations were identified between chlorophyll-a concentration, water temperature, insolation, and phosphate concentration, representing the comprehensive dynamics of aquatic ecosystems in the region. Spatial anomalies of concentrations were calculated based on statistical boundaries of mean values and standard deviations. Spatial zoning of the water area was performed to identify areas at high risk of eutrophication using statistical analysis, including within the boundaries of national water bodies classified according to the EU Water Framework Directive and Marine Strategy Framework Directive ideologies. The study also included an analysis of the spectral characteristics of the sea surface, particularly the light reflection coefficient, based on Sentinel-3 (OLCI) satellite imagery. Using the bio-optical processor “Case 2 Regional Coast Colour (C2RCC)”, the relationship between chlorophyll-a concentration and light reflection in different spectral ranges was studied. It was found that seawater with varying chlorophyll-a concentrations exhibits different spectral profiles. The long-term distribution of dissolved oxygen in the bottom layer was investigated based on the hydrodynamic model “Black Sea Biogeochemistry Analysis and Forecast” from the international service CMEMS, aiming to identify the most vulnerable areas to the influence of eutrophication processes under conditions of vertical stratification by water density.
References
Визначення біотехнологічних показників для проєктування і розміщення екопозитивних конструкцій в морських екосистемах України : методичні рекомендації / С.В. Стадніченко та ін. Херсон : ОЛДІ-ПЛЮС, 2021. 70 с.
Забруднення Чорного моря як наслідок аварійної ситуації, яка склалася після підриву греблі Каховської ГЕС. УкрНЦЕМ. URL: https://sea.gov.ua/index.php/2023/06/27/ges_explosion_conseq/ (дата звернення: 27.07.2023).
Зайцев Ю.П. Самое синее в мире. Нью-Йорк : Изд-во ООН, 1998. 142 с.
Мінічева Г.Г., Соколов Є.В. Екофакторний підхід до зонування українського сектору Чорного та Азовського морів. Морський екологічний журнал. 2021. Т. 9, № 1. C. 52–62.
Сафранов Т.А., Берлінський М.А., Ель Хадрі Ю., Сліже М.О. Оцінка екосистемних послуг північно-західної частини Чорного моря: стан, проблеми та перспективи. Вісник Харківського національного університету ім. Каразіна. 2022. № 56. C. 255–263.
Alexandrov B., Minicheva G., Zaitsev Y. Black Sea Network of Marine Protected Areas: European Approaches and Adaptation to Expansion and Monitoring in Ukraine. Management of Marine Protected Areas: A Network Perspective / ed. P.D. Goriup. New York : John Wiley & Sons Ltd., 2017. P. 227–246.
Bakan G., Büyükgüngör H. The Black Sea. Marine pollution bulletin. 2000. Vol. 41(1–6). P. 24–43.
Brockmann C., Doerffer R., Peters M., Kerstin S., Embacher S., Ruescas A. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. Living Planet Symposium. 2016. Vol. 740. P. 54.
Ciliberti S.A., Grégoire M., Staneva J., Palazov A., Coppini G., Lecci R., Agostini P. Monitoring and Forecasting the Ocean State and Biogeochemical Processes in the Black Sea: Recent Developments in the Copernicus Marine Service. Journal of Marine Science and Engineering. 2021. Vol. 9, № 10. 1146.
Copernicus Marine Servise. URL: https://marine.copernicus.eu/.
Сopernicus climate change. URL: https://cds.climate.copernicus.eu/.
Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Official Journal of the European Union. 2008. L. 164. P. 19–40.
Giovanni – The Bridge Between Data and Science. URL: https://giovanni.gsfc.nasa.gov/giovanni/.
Grégoire M., Vandenbulcke L., Capet A. Black Sea Biogeochemical Reanalysis (CMEMS BS-Biogeochemistry) (Version 1) [Data Set]. Copernicus Monitoring Environment Marine Service (CMEMS). 2020. URL: https://resources.marine.copernicus.eu/product-detail/BLKSEA_REANALYSIS_BIO_007_005/INFORMATION (дата звернення: 15.08.2021).
Kahru M., Savchuk O.P., Elmgren R. Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability. Marine ecology progress series. 2007. № 343. P. 15–23.
Kajiyama T., D’Alimonte D., Zibordi G. Algorithms merging for the determination of chlorophyll-a concentration in the Black sea. IEEE Geoscience and Remote Sensing Letters. 2018. Vol. 16, № 5. P. 677–681.
Manea E., Di Carlo D., Depellegrin D., Agardy T., Gissi E. Multidimensional assessment of supporting ecosystem services for marine spatial planning of the Adriatic Sea. Ecological Indicators. 2019. Vol. 101. P. 821–837.
O’Neil J.M., Davis T.W., Burford M.A., Gobler C.J. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful algae. 2012. Vol. 14. P. 313–334.
Report of the regional workshop to facilitate the description of ecologically and biologically significant marine areas in the Black Sea and the Caspian Sea (Baku, 24–29 April 2017). URL: https://www.cbd.int/doc/c/50f9/bd6d/21c043b0408fd80e5d2bbb96/ebsaws-2017-01-04-en.pdf 10.12.2018.
Rodríguez-Rodríguez D., Malak D.A., Soukissian T., Sánchez-Espinosa A. Achieving Blue Growth through maritime spatial planning: Offshore wind energy optimization and biodiversity conservation in Spain. Marine Policy. 2014. Vol. 73. P. 8–14.
Vahtera E., Conley D.J., Gustafsson B.G., Kuosa H., Pitkänen H., Savchuk O.P., Wulff F. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. AMBIO: A journal of the Human Environment. 2007. Vol. 36, № 2. P. 186–194.
Vaičiūtė D., Sokolov Y., Bučas M., Dabulevičienė T., Zotova, O. Earth Observation-Based Cyanobacterial Bloom Index Testing for Ecological Status Assessment in the Open, Coastal and Transitional Waters of the Baltic and Black Seas. Remote Sensing. 2024. (В друці).
Vanella D., Longo-Minnolo G., Belfiore O.R., Ramírez-Cuesta J.M., Pappalardo S., Consoli S., Gandolfi C. Comparing the use of ERA5 reanalysis dataset and groundbased agrometeorological data under different climates and topography in Italy. Journal of Hydrology: Regional Studies. 2022. 42. 101182.
Zaitsev Yu. An Introduction to the Black Sea Ecology. Odessa : Smil Edition and Publishing Agency ltd. 2008. 228 p.