VARIABILITY OF LIGHT ABSORPTION BY PHYTOPLANKTON PIGMENTS, NON-ALGAL PARTICLES AND COLORED DISSOLVED ORGANIC MATTER OF COASTAL AND OPEN WATERS OF THE UKRAINIAN PART OF THE BLACK SEA

Authors

  • A.O. Dzhulai
  • A.B. Zotov
  • E.O. Dykyi

DOI:

https://doi.org/10.47143/1684-1557/2022.1-2.4

Keywords:

light absorption, phytoplankton, non-algal particles, colored dissolved organic matter, Black Sea

Abstract

Variability of light absorption by phytoplankton pigments, non-algal particles and colored dissolved organic matter was analyzed by monthly bio-optical monitoring of coastal and deep waters near Sevastopol in 2009–2014 and by sampling in northwestern part of the Black Sea and along the Crimean coast in August 2011. Light absorption coefficients by phytoplankton were in 10 times bigger in coastal zone near Dnieper Delta compared with deep part of the sea in summer. In autumn light absorption coefficients by phytoplankton were in 5 times bigger in coastal zone near Dnieper Delta compared with deep part of the sea. Light absorption coefficients by non-algal particles in deep water and in coastal zone equally increased in summer and in autumn. Light absorption coefficients by colored dissolved organic matter were in 4 times bigger in coastal zone compared with deep part of the sea in summer. It was found that in summer, both in deep water and near the coast, the main contribution to the total light absorption was made by colored dissolved organic matter, smaller contribution was made by phytoplankton, the smallest contribution was made by non-algal particles. Seasonal and spatial variability of light absorption coefficients by phytoplankton, non-algal particles and colored dissolved organic matter was found. It is necessary to separate data from coastal and deep waters of the Black Sea, as well as to divide data by seasons to obtained better results when calculating primary production by using satellite data.

References

Джулай, А.О. Межгодовая изменчивость содержания пигментов и поглощения света фитопланктоном в прибрежных водах Чёрного моря в районе Севастополя. Экосистемы, их оптимизация и охрана. 2012. 7. С. 179–190.

Джулай, А.О. Сезонная динамика концентрации хлорофилла «а» и поглощения света пигментами фитопланктона в прибрежных водах Севастополя (2009–2010 гг.). Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. 2011. 25. С. 357–369.

И ванов В.А., Овсяный Е.И., Репетин Л.Н. Гидролого-гидрохимический режим Севастопольской бухты и его изменения под воздействием климатических и антропогенных факторов. Севастополь: НПЦ «ЭКОСИ -Гидрофизика». 2006. 90 c.

К оновалов Б.В. Некоторые особенности спектрального поглощения взвеси морской воды. Оптические методы изучения океанов и внутренних водоемов. Новосибирск: Наука, 1979. С. 58–65.

С услин В.В., Чурилова Т.Я., Джулай А.О., Мончева С., Слабакова В., Кривенко О.В., Єфимова Т.В., Салюк П.А. Региональный алгоритм восстановления концентрации хлорофилла «а» и коэффициента поглощения света неживым органическим веществом на длине волны 490 нм в Черном море для спектральных каналов цветовых сканеров MODIS и MER IS. Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. 2014. 28. С. 303–319.

С услин В.В., Чурилова Т.Я., Сосик Х.М. Региональный алгоритм расчета концентрации хлорофилла а в Черном море по спутниковым данным SeaWiFS . Морской экологический журнал. 2008. 2. С. 24–42.

Чурилова Т.Я. Поглощение света фитопланктоном и детритом в Чёрном море в весенний период. Океанология. 2001. 41(5). С. 719–727.

Чурилова Т.Я., Берсенева Г.П., Георгиева Л.В., Брянцева Ю.В. Био-оптические характеристики фитопланктона в период зимне-весеннего «цветения» в Черном море. Морской гидрофизический журнал. 2001. 5. С. 28–40.

Чурилова Т.Я., Берсенева Г.П. Поглощение света фитопланктоном, детритом и растворенным органическим веществом в прибрежном районе Черного моря (июль–август 2002). Морской гидрофизический журнал. 2004. 4. С. 39–50.

Чурилова Т.Я., Берсенева Г.П., Георгиева Л.В. Изменчивость биотических характеристик фитопланктона в Черном море. Океанология. 2004. 44 (2). С. 208–221.

Чурилова Т.Я., Джулай А.О., Суслин В.В., Кривенко О.В., Єфимова Т .В., Муханов В.С., Рилькова О.О., Манжос Л.О. Биооптические показатели вод глубоководной части Черного моря: параметризация поглощения света фитопланктоном в летний и осенний периоды. Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. 2014. 28. С. 320–333.

A ntoine D., Andr´e J.M., Morel A. Oceanic primary production: 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochemical Cycles. 1996. 10 (1). P. 56–69.

A ntoine D., Morel A. Oceanic primary production: 1. Adaptation of spectral light-photosynthesis model in view of application to satellite chlorophyll observations. Global Biogeochemical Cycles. 1996. 10 (1). P. 42–55.

A tkins W.R.G., Poole H.H. The Photo-Electric Measurement of the Penetration of Light of various Wave-Lengths into the Sea and the Physiological Bearing of the Resuits. Philosophical transactions of the royal society of London. 1933. Vol. CCXXN. B 487. PP. 129–164.

Balch W.M., Evans R., Brown J., Feldman G., McClain C., Esaias W. The remote sensing of ocean primary productivity: Use of a new datacompilation to test satellite algorithms. Journal of Geophysical Research. 1992. 97. P. 2279–2293.

Behrenfeld M., Randerson J., McClain C., Feldman G., Los S., Tucker C., Falkowski P., Field C., Frouin R., Esaias W., Kolber D., Pollack N. Temporal variations in the photosynthetic biosphere. Science. 2001. 291. P. 2594–2597.

Campbell J., Antoine D., Armstrong R., Arrigo K., Balch W., Barber R., Behrenfeld M., Bidigare R., Bishop J., Carr M.-E., Esaias W., Falkowski P., Hoepffner N., Iverson R., Kieifer D., Lohrenz S., Marra J., Morel A., Ryan J., Vedernikov V., Waters K., Yentsch C., Yoder J. Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradience. Global Biogeochemical Cycles. 2002. 16 (3). P. 74–75.

Campbell J.W., O’Reilly J.E. Role of satellites in estimating primary productivity on the northwest Atlantic continental shelf. Continental Shelf Research. 1988. 8(2). P. 179– 204.

Carr M-E., Friedrichs M.A.M., Schmeltz M., Aita M.N., Antoine D., Arrigo K.R., Asanuma I., Aumont O., Barber R., Behrenfeld M., Bidigare R., Buitenhuis E.T., Campbell J., Ciotti A., Dierssen H., Dowell M., Dunne J., Esaias W., Gentili B., Gregg W., Groom S., Hoepffner N., Ishizaka J., Kameda T., Le Quere C., Lohrenz S., Marra J., Melin F., Moore K., Morel A., Reddy T.E., Ryan J., Scardi M., Smyth T., Turpie K., Tilstone G., Waters K., Yamanaka Y. A comparison of global estimates of marine primary production from ocean color. Deep-Sea Research. 2006. 53. P. 741–770.

Darecki M., Weeks A., Sagan S., Kowalczuk P., Kaczmarek S. Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms. Continental Shelf Research. 2003. 23 (3–4). P. 237–250.

E ppley R., Stewart W. E., Abbot R. M., Heyman V. Estimating ocean primary production from satellite chlorophyll, introduction to regional differences and statistics for the Southern California Bight. Journal Plankton Research. 1985. 7. P. 57–70.

Ficek Z., Tana R. Entanglement induced by spontaneous emission in spatially extended two-atom systems. Journal of modern optics. 2003. 50. P. 2 765– 2779.

Iverson R.L., Esaias W.E., Turpie K. Ocean annual phytoplankton carbon and new production, and annual export production estimated with empirical equations and CZCS data. Global Change Biology. 2000. 6. P. 57–72. 24. Jeffrey S.W., Mantoura R.F.C., Wright

S.W. Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO publishing. 1997. P. 661.

K opelevich O.V., Burenkov V.I. Relation between the spectral values of the light absorption coefficients of sea water, phytoplanktonic pigments, and yellow substance. Oceanology. 1977. 17. P. 278–282.

Longhurst A., Sathyendranath S., Platt T., Caverhill C. An estimate of global primary production in the ocean from satellite radiometer data. Journal Plankton Research. 1995. 17. P. 1245-1271.

Mélin F., Hoepffner N. Monitoring Phytoplankton Productivity from Satellite–An Aid to Marine Resources Management. Handbook of Satellite Remote Sensing Image Interpretation: Applications for Marine Living Resources Conservation and Management / edited by Morales J., Stuart V., Platt T., Sathyendranath S. EU PRES PO and IOCCG. 2011. P. 79-93.

Mitchell B.G., Kiefer D.A. Chlorophyll a specific absorption and fluorescence excitation spectra for light limited phytoplankton. Deep-Sea Research. 1988. 35 (5). P. 639–663.

Mitchell B.G. Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT ). Ocean Optics X. 1990. 1302. P. 137–148.

Morel A., Prieur L. Analysis of variations in ocean color. Limnology and Oceanography. 1977. 22. P. 709-722.

Morel A. Light and marine photosynthesis: A spectral model with geochemical and climatological implications. Progress in Oceanography. 1991. 26. P. 263–306.

O ’Reilly J.E., Maritorena S.M., O’Brien C., Siegal D.A., Toole D., Menzies D., Smith R.C. SeaWiFS postlaunch Calibration and Validation Analyses. In Part 3. NASA Technical Memorandum. 206892, edited by S. B. Hooker and E. R. Firestone. 2000. No 11. – P. 49.

Platt T., Sathyendranath S. Oceanic primary production: estimation by remote sensing at local and regional scales. Science. 1988. 241. P. 1613–1620.

Platt T., Sathyendranath S. Estimators of primary production for interpretation of remotely sensed data on ocean color. Journal of Geophysical Research: Oceans. 1993a. 98 (C8). P. 14561–14576.

Platt T., Sathyendranath S. The remote sensing of ocean primary productivity – use of a new data compilation to test satellite algorithms – comment. Journal of Geophysical Research: Oceans. 1993b. 98. P. 16583–16584.

Platt T., Sathyendranath S., Longhurst A. Remotesensing of primary production in the ocean – promise and fulfilment. Philosophical Transactions: Biological Sciences. 1995. 348(1324). P. 191–201.

S athyendranath S., Platt T., Cavarhill C.M., Warnock R.E., Lewis M.R. Remote sensing of oceanic primary production: computations using a spectral model. Deep-Sea Research. 1989. 36 (3). P. 431–453.

S athyendranath S., Platt T., Stuart V. Remote sensing of ocean colour: Recent advances, exciting possibilities and unanswered questions. 5th Pacific Ocean Remote Sens. Conf. (PORSE C): Proceedings, Dona Paula, Goa, 5–8 Dec. 2000. Vol. 1. P. 6.

S hibata K., Benson A.A., Calvin M. The absorption spectra of suspension of living micro-organisms. Biochimica et Biophysica Acta. 1954. 15. P. 461–470.

S hibata K. Spectrophotometry of intact biological materials, absolute and relative measurements of their transmission, reflection, and absorption spectra. Journal of Biochemistry. 1958. 45. P. 599–623.

S mith R.C., Baker K.S. The bio-optical state of ocean waters and remote sensing. Limnology and Oceanography. 1978. 23. P. 247–259.

T wardowski M., Röttgers R., Stramski D. The absorption Coefficient, An Overview. IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation. Dartmouth, NS, Canada. Vol. 1.0: Inherent Optical Property Measurements and Protocols: Absorption Coefficient. 2018. Ch. 1. P. 1–17.

Wozniak B., Dera J., Ficek D., Majchrowski R., Ostrowska M., Kaczmarek S. Modelling light and photosynthesis in the marine environment. Oceanologia. 2003. 45(2). P. 171–245.

Y entsch C.S. A non-extractive method for the quantitative estimation of chlorophyll in algal cultures. Nature. 1957. 179. P. 1302–1304.

Y entsch C.S. Measurement of visible light absorption by particulate matter in the ocean. Limnology and Oceanography. 1962. 7. P. 207–217.

http://blackseacolor.com.

Published

2022-12-23