ПОГЛИНАННЯ СВІТЛА І МАКСИМАЛЬНИЙ КВАНТОВИЙ ВИХІД ФОТОСИНТЕЗУ В ПЕРІОД ОСІННЬОГО ЦВІТІННЯ ФIТОПЛАНКТОНУ В ЧОРНОМУ МОРІ

Authors

  • T. Churilova
  • Z. Finenko
  • S. Tugrul

Keywords:

Chlorophyll a, phytoplankton, light absorption, maximum quantum yield, nutrients

Abstract

In the frame of GEF/UNDP Black Sea Ecosystem Recovery Project the effect of nutrient availability on phytoplankton light absorption and maximum quantum yield of carbon fixation (фmax) has been investigated. It has been found out that chlorophyll a concentration (Chl a) varied from 0.3 to 10 mg m-3 increasing from deep-water region to shelf waters. At the shallow stations, where upper mixed layer spread deeper the bottom of euphotic zone, the homogenous pigment distribution was observed. In the deep-water region the Chl a profiles showed the presence of a deep Chl a maximum (DCM) below a seasonal density cline. The functional characteristics of phytoplankton showed depthdependent variation. The phytoplankton from DCM was characterized 20 % lower values of spectral averaged Chl a – specific light absorption aph  (0.016±0.0025 m2 (mgChl)-1) and more than in two times higher values of фmax (0.070±0.012 molC (mol quanta)-1) compared with the surface phytoplankton aph  (0.021±0.0035 m2 (mgChl)-1) and
фmax (0.030±0.0078 molC (mol quanta)-1). From offshore to shallow stations the increasing of surface Chl a concentration was accompanied with slight decrease of aph  (on ~20 %) and significant increase of фmax up to its theoretical limit - 0.1 molC (mol quanta)-1, which were caused by an increase in nutrient supply across the shelf. 

References

Babin, M., Morel A., Falkowski P. G., Claustre H., Bricaud A., Kobler Z. Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic systems // Deep Sea Res. – 1996. – 43. – P. 1241 – 1272.

Bricaud A., Claustre H., Ras J., Oubelkheir K. Natural variability of phytoplanktonic absorption in oceanicwaters: Influence of the size structure of algal populations // J. Geophys. Res. – 2004. - 109, C11010, doi:10.1029/2004JC002419.

Churilova T., Berseneva G. Absorption of light by phytoplankton, detritus and dissolved organic sub-stances in the coastal region of the Black Sea (July-August 2002) // Phys. Oceanography. – 2004. – 14, No.4. – P.221 – 233.

Churilova T., Berseneva G., Georgieva L. Variability in bio-optical characteristics of phytoplankton in the Black Sea // Oceanology. – 2004. – 44, No 2. – P.192 – 204 (translated into English from “Okeanologia”).

Cleveland J. S., Perry M. J. Quantum yield, relative specific absorption and fluorescence in nitrogen-limited Chaetoceros gracilis // Mar. Biol. – 1987. – 94. - P. 489 – 497.

Fargion G. S., Mueller J. L. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation. / Revi-sion 2, Nasa Technical Memorandum report. - 2000. - 209966. - NASA Goddard Space Flight Center, Greenbelt, MD, 189 p.

Finenko Z. Primary production in summer. / Zatz V., Finenko Z. Waters dynamics and productivity of plankton in the Black Sea. – Moscow: Academy of Science of USSR, 1988. – P. 315 – 322.

Finenko Z., Churilova T., Parkhomenko A., Tugrul S. Photosynthetic characteristics of phytoplankton in the western Black Sea during the autumn bloom // MEJ, in press

Finenko Z., Churilova T., Sosik H. M. Vertical distribution of phytoplankton photosynthetic characteristics in the Black Sea. // Oceanology. – 2004. - 44, No. 2. - P. 205 – 218 (translated into English from “Okeanologia”).

Finenko Z. Z., Hoepffner N., Williams R., Piont-kovski S. A. Phytoplankton carbon to chlorophyll a ratio: response to light, temperature and nutrient limitation. // Mar. Ecol. J. – 2003. - 2, No. 2. - P. 40 – 64.

Fujiki T., Taguchi S. Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance. // J. Plankt. Res. – 2002. – 24, No.9. – P. 859 – 874.

Geider R. J., LaRoche J., Greene R. M., Olaizola M. Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation. // J. Phycol. – 1993. – 29. – P. 755 – 766.

Holm-Hansen O., Lorenzen C. J., Holmes R. W., Strickland J. D. H. Fluorometric determination of chlorophyll // J. Cons. Inst. Explor. Mer. – 1965. - No. 30. – P. 3 – 15.

Jeffrey S. W., Humphrey G. F. New spectrophotometric equations for determining chlorophylls a,b,c1 and c2 in higher plants, algae and natural phytoplankton. // Biochem. Physiol. Pflnz. – 1975. – 167. – P.191 – 194.

Kishino, M., Takahashi N., Okami N., Ichimura S. Estimation of the spectral absorption coefficients of phytoplankton in the sea // Bull. Mar. Sci. – 1985. – 37. – P. 634 – 642.

Kolber Z., Zehr J., Falkowski P. G. Effect of growth irradiance and nitrogen limitation on photosynthetic energy conversation in photosystem II // Plank Physiology. – 1988. – 88. – P.923 – 929.

Lohrenz S., Weidemann A. D., Tuel M. Phytoplankton spectral absorption as influenced by community size structure and pigment composition. // J. Plankt. Res. – 2003. - 25, No.1. – P.35 – 61.

MacIntyre H. L., Kana T. M., Anning T., Geider R. J. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria // J. Phycol. – 2002. – 38. – P. 17 – 38.

Mankovsky V. I. Basis for Ocean optics. – Sevastopol: Marine Hydrophysical Institute, NAS of Ukraine, 1996. – 119 p. (in Russian)

Mitchell B. G. Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT) // Ed. R. Spinrad Ocean Optics X, - Washington: SPIE Bellingham, 1990. – P. 137 – 148.

Mitchell B. G., Kiefer D. A. Chlorophyll a specific absorption and fluorescence excitation spectra for light limited phytoplankton // Deep- Sea Res. – 1988. – 35, No. 5. – P. 639 – 663.

Moore L. R., Goericke R., Chisholm S. W. Comparative physiology of Synechococcus and Prochlorococcus: infuence of light and temperature on growth, pigments, fluorescence and absorptive properties // Mar. Ecol. Prog. Ser. – 1995. – 116. – P. 259 – 275.

Morel A., Bricaud A. Theoretical results concerning light absorption in a discrete medium and application to specific absorption of phytoplankton // Deep-Sea Res. - 1981. - No 28A. - P. 1375 – 1393.

Phytoplankton pigments in oceanography: guidelines to modern methods / Ed. Jeffrey S.W., Mantoura R.F.C., Wright S.W.: UNESCO Publ., 1997. - 661 p.

Sosik H. M., Mitchell B. G. Absorption, Fluorescence, and Quantum Yield for Growth in Nitrogen-Limited Dunaliella tertiolecta // Limnol. Oceanogr. – 1991. – 36, No. 5. – P. 910 – 921.

Strickland J. D. H., Parsons T. R. A practical handbook of seawater analysis // Bull. Fish. Board. Can. – 1972. - 167 pp.

Yentsch C. S. Measurement of visible light absorption by particulate matter in the ocean // Limnol. Oceanogr. – 1962. – 7. – P. 207 – 217.

Young E. B., Beardall J. Rapid ammonium and nitrateinduced perturbations to Chl a fluorescence in nitrogen stressed Dunaliella tertiolecta (Chlorophyta) // J. Phycol. – 2003. – 39. – P. 332 – 342.

Downloads

Published

2023-05-27