IS THERE ANIMAL LIFE AT THE BLACK SEA GREAT DEPTHS?

Authors

  • V. E. Zaika

Keywords:

benthos of bottom bed and slope, microbenthos, meiobenthos, Black Sea

Abstract

The findings of micro – and meiobenthic eukaryotes representatives at the Black sea deep bottom have been discussed. These findings are unusual for the hydrogen sulfide infected zone. They are in contradiction to two ideas; 1) about absence of life except bacterial, at the Black sea depths, and 2) about impossible life in environment containing hydrogen sulfide. Short history of the Black sea depths studies has been given. Commentaries to N. G. Sergeeva findings are given. There are given the reasons, why these findings can not be cadavres, brought from the upper aerated part of the sea. There is given as well the review of literature on eukaryotes findings in other anoxic biotopes, containing hydrogen sulfide and the data on meiobenthos animals’ strategy in the hydrogen sulfide detoxication.

References

Виноградов М. Е. Влияние сероводорода на распределение жизни в Чёрном море // Журн. общ. биол. 1997. – 58, №3. – С. 43 – 60.

Водяницкий В. А. А. О. Ковалевский и Севастопольская биологическая станция // Тр. Севаст. биол. ст. – 1954. – 8. – С. 3 – 10.

Волков И. И., Скирта А. Ю., Маккавеев П. Н. и др. О гидрофизической и гидрохимической однородности глубинных вод Чёрного моря //Комплексные исследования северо-восточной части Чёрного моря. – 2002. – С. 161 – 169.

Киселева М. И. Полихеты (Polychaeta) Азовского и Чёрного морей. – Апатиты: Кольский научный центр РАН, 2004. – С. 140 – 144.

Кравец В. Н. Структура и изменчивость поля сероводорода Чёрного моря: автореф. дисс. …канд. геогр. наук. – Севастополь, 2002. – 20 с,

Сергеева Н. Г. Качественный состав и количественное распределение нематод у южного побережья Крыма // Биология моря. – 1974. – Вып. 32. – С. 22 – 42.

Сергеева Н. Г., Заика В. Е. Экология полихет из пограничных сообществ пелагиали и бентали // ДАН Украины. – 2000. – №1. – С. 197 – 201.

Сергеева Н. Г., Заика В. Е. Ciliophora в серово-дородной зоне Чёрного моря // Морск. экол. журн. – 2008. – 7, №1. – С. 80 – 85.

Allison P. A. The role of anoxia in decay and mineralization of proteinaceous macro-fossils // Paleobiology. – 1988. – 14, №2. – Р. 139 – 154.

Behnke A., Bunge J., Barger K., et al. Microeukaryote community pattern along an O2/H2S gradient in a supersulfidic anoxic fjord (Framvaren, Norway) // Appl. Environmental Microbiology. 2006. – 72, №5. – Р. 3626 – 3636.

Bernhard J. M., Visscher P. T., Bowser S. S. Sub-millimeter life position of bacteria, protest, and metazoans in laminated sediment of Santa Barbara Basin // Limnol. Oceanogr. – 2003. – 48, №2. – Р. 813 – 828.

Edgcomb V. P., Kysela D. T., Teske A. et al. Benthic eukaryotic diversity in Guaymas basin hydrothermal vent environment // Proc. Natl. Acad. Sci. USA. – 2002. – 99, №11. – Р. 7658 – 7662.

Fenchel T., Perry T., Thane A. Anaerobiosis and symbiosis with bacteria in free-living ciliates // J. Protozool. – 1977. – 24. – Р. 154 – 63.

Fenchel T., Kristensen L. D., Rasmussen L. Water column anoxia: vertical zonation of planktonic protozoa // MEPS. – 1990. – 62 – Р. 1 – 10.

Finlay B. J., Embley T. M., Fenchel T. A new polymorphic methanogen, closely related to Methano-corpusculum parvum, living in stable symbiosis within the anaerobic ciliate Trimyema sp. // J. Gen. Microbiol. – 1993. – 139, №2. – Р. 371 – 8.

Finlay B. J., Esteban G. Exploring Leeuwenhoek’s legacy: the abundance and diversity of protozoa // Int. Microbiol. – 2001. – 4. – Р. 125 – 133.

Gooday A., Bernhard J. M., Levin L. A., Suhr S. B. Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings: taxonomic composition, diversity, and relation to metazoan faunas // Deep Sea Res., Pt. II. – 2000. – 47, №1–2. – Р. 25 – 54.

Grieshaber M. K., Volkel A. A. Animal adaptation for tolerance and exploitation of poisonous sulfide // Ann. Rev. Physiol. – 1998. – 60. – Р. 33 – 53.

Hayward B. H., Droste R., Epstein S. Interstitial ciliates: benthic microaerophiles or planktonic an-aerobes? // J. Eukaryotic Microbiol. 2003. – 50, № 5. – Р. 356 –359.

Korovchinsky N., Sergeeva N. G. A new family of the order Ctenopoda (Crustacea: Cladocera) from the depths of the Black Sea // Zootaxa. – 2008. – 1795. – Р. 57 – 66.

Lampadariou N., Hatziayani E., Tselepides A. Community structure of meiofauna and macrofauna in Mediterranean deep-hyper-saline anoxic basins // CIESM Workshop Monographs. – 2003. –№ 23. – Р. 55 – 59.

Luo Q., Krumholz L. R., Najar F. Z., et al. Diversity of the microeukaryotic community in sulfide-I spring (Oklahoma) // Appl. Environ. Microbial. – 2005. – 71, № 10. – Р. 6175 – 6184.

Luth U. Macrofauna investigation on Romanian shelf // Cruise Report. MPI Black Sea cruise RV Petr Kottsov, (Bremen, 2 – 23 Sept. 1997): Max Planck Inst. – Bremen, 1997. - Р. 5 – 9.

Luth C., Luth U. A benthic approach to determine long-term changes of the oxic/anoxic interface in the water column of the Black Sea // Proc. 30-th EMBS, Southampton, UK, 1997. – Р. 231 – 242.

Manheim F. T., Chan K. M. Interstitial waters of Black sea sediments: new data and review // The Black sea – geology, chemistry, and biology / Edited by egon T. Degens and David A. Rose – Tusla, Oklahoma, USA: Published by The American Association of Pertoleum Geologists, 1974. – P. 155 – 180.

Massana R., Pedros-Alio C. Role of anaerobic ciliates in planktonic food webs: abundance, feeding,and impact on bacteria in the field // Appl. Environmental Microbiol. – 1994. – 60, № 4. – Р. 1325–1334.

Mus F., Dubini A., Seibert M. et al. Anaerobic acclimation in chlamidomonas reihardtii: Anoxic gene expression, hydrogenase induction and metabolic pathways // J. Biol. Chem. – 2007. (http://www.jbs.org/cgi/).

Nisbet F. G., Sleep N. H. The habitat and nature of early life // Nature. – 2001. – 409. – Р. 1083 –1091.

Patterson D. J., Simpson A. G. B., Weerakoon N. Free-living flagellates from anoxic habitats and the assembly of the eukaryotic cell // Biol. Bull. – 1999. – 196. – Р. 381 – 384.

Powell E. N., Crenshaw M. A., Rieger R. M. Adaptation to sulfide in sulfide-system meiofauna // MEPS. – 1980. – 2, № 2. – Р. 169 – 177.

Stoeck Th., Epstein S. Novel eukaryotic lineages inferred from small-subunit rRNA: analyses of oxygen-depleted marine environments // Appl. Environmental Microbiology, May 2003. – Р. 2657 – 2663.

Stoeck Th., Taylor G. T., Epstein S. S. 2003. Novel eukaryotes from permanently anoxic Cariaco Basin (Caribbean Sea) // Appl. Environmental Microbiology, Sept. 2003. – Р. 5656 – 5663.

Takishita K., Tsuchiya M., Kawato M. et al. Genetic diversity of microbial eukaryotes in anoxic sediment of the saline meromictic lake Namako-ike (Japan): on detection of anaerobic or anoxic-tolerant lineages of eukaryotes // Protist. – 2006. – 158, № 1. – Р. 51 – 64.

Yanko-Hombach V. Transformation of Neoeuxinian lake into Black Sea: evidence from benthic foraminifera // 2-nd Plenary meeting of project IGCP-521. Odessa: Astroprint, 2006. – Р. 67 – 71.

Zaika V. E. Bioindications of human induced damage to the Black Sea shelf ecosystem // Proc. Black Sea symposium. (Istanbul, Turkey: Publ. Black Sea Foundation. (16 – 18 Sept. 1991). – Istanbul, 1994. – P.281 – 284.

Zuendorf A., Bunge J., Behnke A., Barger K. J., Stoeck Th. Diversity estimates of microeukaryotes below the chemocline of the anoxic Mariager Fjord, Denmark // FEMS Microbiology Ecology. – 2006. – 58, № 3. – Р. 476 – 491.

Published

2023-05-26