VARIABILITY OF OXIC/ANOXIC CONDITIONS OVER THE FIELDS OF METHANE SEEPS AT THE NW BLACK SEA SHELF SLOPE
Keywords:
The Black Sea, oxic/anoxic interface, temporal and spatial variability, gas seep microbial mats and reefs, control of oxidation of methaneAbstract
CTD data, H2S water column samples and detailed bathymetric survey of the underwater Dnieper paleo-delta were analyzed to study of temporal and spatial fluctuations of oxic/anoxic interface over the gas seepage area, where methane-related microbial mats and carbonate reefs are highly developed. Time-series CTD measurements have allowed to estimate temporal variability of the isopycnal surfaces with sigma-theta (σ) values 15.4 (oxycline encased with the permanent pycnocline) and 16.2 (oxic/anoxic interface). In the investigated region quasi-periodical vertical fluctuations of the H2S-waters upper boundary (σ = 16.2) between 130 and 165 m depths, i.e. up to 35 meters, have been observed. At the area of massive microbial reefs within this depths range a seabed slope angles have been changed from 1.5o to 13.0o. Accordingly, a specific belt–like zone of periodic near-bottom water redox-changes could to cover a great distance across the shelf slope – up to 1100 m. In view of fact that microbial control of methane oxidation and control of CH4-fluxes it can be both aerobic or anaerobic process, it should to influence on the type, pathways and activity of microbial oxidation of methane within the gas seep fields.
References
Blatov A. S., Bulgakov N. P., Ivanov V. A., Kosarev A. N., Tushiltin V. S. Variability of hydrophysical fields of the Black Sea. – Leningrad: Gidrometeoizdat, 1984. – 240 p. (in Russian).
Boetius A., Ravenschlag K., Schubert C. J., Rickert D. et al. Microscopic identification of a microibial consortium apparently mediating anaerobic methane oxidation above marine gas hydrate // Nature. – 2000. – 407. – P. 623 – 626.
Hydrometeorology and hydrochemistry of the Soviet Union Seas. The Black Sea / Simonov A. I., Altman E. N. – Leningrad: Hydrometeorology, 1991. – 4, 1. – 428 p. (in Russian).
Iversen N., Jørgensen B. B. Anaerobic methane oxidation rates at the sulfate–methane transition in marine sediments from Kattegat and Skagerrak (Denmark) // Limnol. Oceanogr. – 1985. – 30. – P. 944 – 955.
Jørgensen B. B., Weber A., Zophi J. Sulfate reductuion and anaerobic methane oxidation in Black Sea sediments // Deep–Sea Research. – 2001. – 48. – P. 2097 – 2120.
King G. M. Ecological aspects of methane oxidation, a key determinant of global methane dynamics // Adv. Microbiol. Ecol. – 1992. – 12. – P. 431 – 468.
Luth U., Luth C., Stokozov N. A., Gulin M. B. The chemocline rise effect on the north–western slope of the Black Sea / Luth U., Luth C., Thiel H. MEGASEEBS Methane gas seeps explorations in the Black Sea. – Hamburg: Berichte aus dem Zentrum fuer Meeres– und Klimatoforsch, 1998. – 14, E. – P. 59 – 77.
Michaelis W., Seifert R., Nauhaus K., Treude T. et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane // Science. – 2002. – 297, 5583. – P. 1013 – 1015.
Murray J. W., Top Z., Özsoy E. Hydrographic properties and ventilation of the Black Sea // Deep–Sea Research. – 1991. – 38, 2. – P. 663 – 689.
Özsoy E., Ünlüata U. Oceanography of the Black Sea: a review of some recent results // Earth–Sciences Review. – 1997. – 42. – P. 231 – 272.
Polikarpov G. G., Egorov V. N., Gulin M. B., Gulin S. B. Gas Seeps in the Black Sea // Nauka i Zhizn (‘Science and Life’). – 1991. – 9. – P. 28 – 31 (In Russian).
Saydam C., Tugrul S., Basturk O., Oguz T. Identification of oxic/anoxic interfece by isopycnal surfaces in the Black Sea // Deep–Sea Research. – 1993. – 40, 7. – P. 1405 – 1412.
Stanev E. V., Beckers J. M., Lancelot C., Staneva J. V. et al. Coastal–open Ocean Exchange in the Black Sea: Observation and Modelling // Estuar. Coast. and Shelf Sc. – 2002. – 54. – P. 601 – 620.
Zender A. J. B., Brock T. D. Anaerobic methane oxidation: occurrence and ecology // Appl. Environ. Microbiol. – 1980. – 30, 1. – P. 194 – 204.