ACTINOBACTERIA OF GROWTH OF SOLID SUBSTRATES OF THE ODESA GULF OF THE BLACK SEA

Authors

  • I.V. Strashnova
  • N.V. Korotaeva
  • K.S. Potapenko
  • N.Yu. Vasylieva
  • M.M. Chaban
  • M.D. Shtenikov
  • G.V. Lisyutin
  • V.O. Ivanytsia

DOI:

https://doi.org/10.47143/1684-1557/2021.2.07

Keywords:

Black Sea, Odesa Bay, biological fouling, actinobacteria, biological properties

Abstract

Studies of the activity and interaction of marine microorganisms with other organisms provide an understanding of the functioning of biogeochemical processes, food chains and symbiosis. Marine microbiome members also have useful properties that can be used to search for and produce new products and develop new processes in marine biotechnology. Representatives of actinobacteria isolated from various sources of the marine environment are especially promising in this aspect. The aim of the study was to isolate actinobacteria from biological overgrowth of concrete structures and natural shellfish of the Odesa Bay, to determine their main biological properties and biological diversity. As a result, 20 and 19 strains of actinobacteria were isolated from the overgrowth of shell rock and concrete surfaces, respectively. The isolated bacteria were characterized by morphological variability during growth on nutrient media (MPA, OA, SCA, ISP-1 – ISP-6), forming substrate and aerial mycelium. Some strains synthesized water-soluble and melanoid pigments on appropriate media. Most strains grew well in the presence of NaCl at a concentration of less than 9%, and the strains isolated from concrete fouling are more resistant to this chemical agent. Isolated strains utilized various carbon substrates, demonstrating significant metabolic activity and capacity. The most commonly used substrate for all isolated strains was lactose, the least suitable – xylose (only 35,0% of strains isolated from shell rock, and 21,6% of strains from concrete overgrowth metabolized this carbohydrate). Preliminary identification of isolated strains of actinobacteria by determining the spectra of fatty acids defined that almost all of them are members of the genus Streptomyces. At the first actinobacteria were isolated from the Odesa Bay of the Black Sea, morphological, cultural and physiological-biochemical properties of the obtained strains were characterized. Their taxonomic composition and prospects of use for the search for producers of biologically active substances have been preliminarily determined.

References

Білявська Л.О. Актинобактерії роду Streptomyces і їхні метаболіти у біорегуляції рослин : дис. … док. біол. наук : 03.00.07. Київ, 2018. 485 с.

Валагурова Е.В., Козырицкая В.Е., Иутинская Г.А. Актиномицеты рода Streptomyces, описание видов и компьютерная программа их идентификации. Киев : Наукова думка, 2003. 618 с.

Сищикова О.В. Біологічні властивості та таксономічний склад стрептоміцетів природних ґрунтів техноземів Криворіжжя. Мікробіологія і біотехнологія. 2014. № 1. С. 91–104.

Alice Maria B.F., Aruna Sharmili S., Anbumalarmathi J. Isolation and characterization of actinomycetes from marine soil. MOJ Biol Med. 2018. Vol. 3 I. 6. P. 221‒225. DOI: 10.15406/mojbm.2018.03.00103.

Anderson A.S., Wellington E.M.H. The taxonomy of Streptomyces and related genera. Journal Systematic and Evolution Microbiology. 2001. Vol. 51 (3). P. 797–814.

URL: https://doi.org/10.1099/00207713-51-3-797.

Antony-Babu S., Stach J.E., Goodfellow M. Genetic and phenotypic evidence for Strep-tomyces griseus ecovars isolated from a beach and dune sand system. AntonieVan Leeuwenhoek. 2008. Vol. 94 (1). P. 63–74.

Dastager S.G., Li W.J., Dayanand A. et al. Separation, identification and analysis of pigment (melanin) production in Streptomyces. African Journal of Biotechnology. 2006. Vol. 5 (8). P. 1131–1134.

Dhakal D., Pokhrel A.R., Shrestha B., Sohng J.K. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Frontiers in Microbiology. 2017. Vol. 8 (1106). P. 1–13. DOI: 10.3389/fmicb.2017.01106.

Ettoumia B., Chouchanec H., Guesmia A. et al. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea. Microbiological Research. 2016. No. 186–187. P. 71–80. DOI: 10.1016/j.micres.2016.03.006.

Jayashanth E. Actinobacteria – morphology, physiology, biochemistry, diversity and Industrial Applications of genus Actinobacteria : Microbiology Assignment, 2015. P. 1–16. DOI: 10.13140/RG.2.1.2632.5928.

Kroppenstedt R.M. Fatty acid and menaquinone analysis of actinomycetes and related organisms. Chemical Methods in Bacterial Systematics / M. Goodfellow, D.E. Minnikin. Academic Press, London, 1985. P. 173–199.

Manivasagan P., Venkatesan J., Sivakumar K., Kim S.K. Marine actinobacterial metabolites: current status and future perspectives. Microbiological Research. 2013. Vol. 168 (6). P. 311–332. DOI: 10.1016/j.micres.2013.02.002.

Maria A.B.F., Sharmili A.S., Anbumalarmathi J. Isolation and characterization of actinomycetes from marine soil. MOJ Biol Med. 2018. Vol. 3 (6). P. 221‒225. DOI: 10.15406/mojbm.2018.03.00103.

MIS Operation Manual.www.midi-inc.com. September. 2012. Newark.

Panchanathan M., Jayachandran V., Se-Kwon Kim. Introduction to Marine Actinobacteria. Marine microbiology / Se-Kwon Kim. Wiley-VCH Verlag GmbH & Co. KGaA, 2013. P. 1–19. URL: https://doi.org/10.1002/9783527665259.ch01.

Qinyuan Li, Xiu Chen, Yi Jiang, Chenglin Jiang. Cultural, Physiological, and Biochemical Identification of Actinobacteria, Actinobacteria – Basics and Biotechnological Applications, Dharumadurai Dhanasekaran and Yi Jiang, IntechOpen, 2016. URL: http://dx.doi.org/10.5772/61462.

Sasser M. Bacterial identification by gas chromatographic analysis of fatty acid methyl esters (GC-FAME). Technical Note 101. Newark, DE: MIDI. 2006.

Sathiyaseelan K., Saranraj P. Antagonistic activity of marine actinobacteria – a review. Indo-Asian Journal of Multidisciplinary Research. 2016. Vol. 2. I. 4. P. 698–717.

Shirling E.B., Gottlieb D. Methods for characterization of Streptomyces species. International Journal of Systematic and Evolutionary Microbiology. 1966. Vol. 16. P. 313–40.

Subramani R., Aalbersberg W. Marine actinomycetes: An ongoing source of novel bioactive metabolites. Microbiol. Res. 2012. Vol. 167. P. 571–580.

Subramani R., Sipkema D. Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products. Marine Drugs 2019. Vol. 17 (249). P. 1–35. DOI: 10.3390/md1705024.

Ward A.C, Bora N. Diversity and biogeography of marine actinobacteria. Curr Opin Microbiol. 2006. Vol. 9. P.279–286.

Yan Cai, Q. Xue, Zhan-quan Chen, Rong Zhang. Classification and Salt-tolerance of Actinomycetes in the Qinghai Lake Water and Lakeside Saline Soil. Journal of Sustainable Development. 2009. Vol. 2 No 1. P. 107–110. DOI: 10.5539/JSD.V2N1P107.

Yanti A.H., Setyawati T.R., Kurniatuhadi R. Composition and Characterization of Actinomycetes Isolated from Nipah Mangrove Sediment, Gastrointestinal and Fecal Pellets of Nipah Worm (Namalycastis Rhodhocorde). International Conference of Mangroves and Its Related Ecosystems: OP Conf. Series: Earth and Environmental Science, 2019. P. 1–11. DOI: 10.1088/1755-1315/550/1/012003.

Published

2023-05-08