MICROALGAE COLONIZATION ON SOME ARTIFICIAL POLYMERS IN EXPERIMENTAL CONDITIONS

Authors

  • I.A. Kapshyna
  • A.A. Snigirova
  • О.Ye. Uzun

DOI:

https://doi.org/10.47143/1684-1557/2021.2.03

Keywords:

microalgae, succession, biofouling, artificial polymers, marine litter, plastic, laboratory and field experiments

Abstract

The present work demonstrates the results of experimental studies of the character of microphyte fouling on the surface of plastic materials. The work is based on two laboratory experiments I and II and the field one (experiment III). Experiments I and II were established in laboratory conditions in crystallizers for 4 and 7 weeks. As a model for the experiment I, polyethylene terephthalate (PET) plates of two types were used: the plates taken from the marine environment from coastal decomposition (rough, EP) and untreated PET plastic (smooth, KP); for experiment II – low pressure polyethylene (LDPE) plates and untreated PET plastic. Glass plates were used as controls. The field experiment took place for 7 days in the coastal zone of the Gulf of Odessa. PET plates of different transparency and surface were used as a model.
As a result of experiment I, the plates of rough plastic (EP) and glass (K) had the best fouling, the lowest parameters of the fouling on the plates with a smooth surface (KP). Significant differences in quantitative indicators of microalgae on the plates were detected only during the first exposure. As a result of changes in the properties of the plastic surface after being in the marine environment, it becomes more suitable for the formation of fouling in the laboratory (experiment I), forming a biomass of from 0.2·10‑2 mg·cm-2 to 4.0·10‑2 mg·cm-2. Laboratory experiment II showed a gradual increase in the quantitative indicators of phytoperiphyton on PET plates (from 0.01·10‑2 mg·cm-2 to 0.18·10‑2 mg·cm-2), and a decrease on LDPE plates (from 0.03·10‑2 mg·cm-2 to 0.001·10-2 mg·cm-2). These data are confirmed by the correlation coefficient: +0.9 (for PET) and -0.9 (for LDPE) for biomass. The development of microalgae was regulated by ciliates, which began to develop actively on 2–3 weeks of the experiment and used microphytes as food. The maximum number of ciliates was observed on LDPE plates. Weekly exposure of PET in field experiment III demonstrated that the primary settlements of microphytes are quite diverse and reached 28 species. The obtained data make a significant contribution to understanding the processes of interaction of plastic materials with microalgae and will be the basis for future research.

References

Горбенко Ю.А. Экология морских микроорганизмов перифитона : монография / отв. ред. О.Г. Миронов. Киев : Наукова думка, 1977. 249 с.

Гусляков Н.Е., Закордонец О.А., Герасимюк В.П. Атлас диатомовых водорослей бентоса северо-западной части Черного моря и прилегающих водоемов. Киев : Наукова думка, 1992. 112 с.

Калинина О.Ю., Сапожников Ф.В., Снигирёва А.А., Салимон А.И., Каляева Я.В. Использование пластиковых элементов для увеличения контактной поверхности субстрата при культивировании прикрепленных видов водорослей. Вопросы современной альгологии. 2021. Вып. 25. №1. С. 110–123. DOI: 10.33624/2311-0147-2021-1(25)-110-123.

Коваленко О.В. Синьо-зелені водорості. Том. І. Вип. 1. Пор. Chroococcales. Флора водоростей України. Київ : Арістей, 2009. 387 с.

Ковтун О.O., Снігірьова А.О., Білоус О.П. Методичні рекомендації з вивчення фітомікробентосу та фітоперифітону. Одеса : Одеський національний університет імені І.І. Мечникова, 2012. 38 с.

Корляков К.А. Метод «царапанных» стекол обрастания для интенсификации изучения структурно-динамических характеристик перифитона. Вестник Совета молодых учёных и специалистов Челябинской области. 2017. Т. 1. Вып. 18. № 3. С. 5–14.

Курилов А.В. Инфузории планктона прибрежной зоны северо-западной части Чёрного моря. Экология моря. 2004. Т. 65. С. 35–40.

Неврова Е.Л., Гусляков Н.Е. Сезонная динамика бентосных диатомовых водорослей на твердых субстратах Севастопольской бухты. Экология моря. 1988. Вып. 30. С. 25–28.

Рябушко Л.И., Лохова Д.С., Стрижак А.В. Диатомовые эпифитона некоторых видов зелёных водорослей-макрофитов и перифитона антропогенных субстратов крымского прибрежья Чёрного моря. Альгология. 2013. Т. 23. № 4. С. 419–437.

Рябушко Л.И., Сапожников Ф.В., Бондаренко А.В., Калинина О.Ю. Диатомовые обрастания синтетических полимерных материалов в Карантинной бухте (Крым, Черное море). Вопросы современной альгологии. 2019. Т. 20. № 2. С. 87–91. DOI: 10.33624/2311-0147-2019-2(20)-87-91.

Снигирева А.А., Сапожников Ф.В., Калинина О.Ю., Капшина И.А. Род Cocconeis (Bacillariophyta) в обрастании пластиковых материалов в акватории Одесского залива (Черное море). Диатомовые водоросли: Морфология, биология, систематика, Флористика, экология, Палеогеография, Биостратиграфия : материалы XVII Международной научной конференции, Минск, 23–28 августа 2021 г. Минск, 2021а. С. 129–130.

Снигирёва А.А., Узун E.E., Капшина И.A., Портянко В.В. Формирование обрастания на пластиковом субстрате в условиях природного эксперимента. International Conference Academician Leo Berg – 145 : Collection of Scientific Articles. Бендери : Eco-TIRAS, 2021б. С. 456–458.

Царенко П.М., Краткий определитель хлорококковых водорослей Украинской ССР / отв. ред. Г.М. Паламарь-Мордвинцева. Киев : Наукова думка, 1990. 208 с.

Artham T., Sudhakar M., Venkatesan R., Nair C.M., Murty K.V.G.K., Doble M. Biofouling and stability of synthetic polymers in sea water. International Biodeterioration & Biodegradation. 2009. V. 63. № 7. P. 884–890. DOI: 10.1016/j.ibiod.2009.03.003.

Aytan Ü., Şentürk Y., Esensoy F.B., Öztekin A., Ağırbaş E., Valente A. Microplastic pollution along the southeastern Black Sea. Marine Litter in the Black Sea / eds. Ü. Aytan, M. Pogojeva, A. Simeonova. Istanbul, Turkey: Turkish Marine Research Foundation (TUDAV), 2020. No: 56. P. 192–207.

Balycheva D.S. Seasonal quantitative dynamic of periphyton Bacillariophyta on the experimental glass slides monthly exposed in a coastal seawater area of the Crimea (the Black sea). International Journal on Algae. 2014. Vol. 16. № 3. P. 229–236. DOI: 10.1615/InterJAlgae.v16.i3.20.

Caron D.A., Sieburth J.M. Disruption of the primary fouling sequence on fiber glass-reinforced plastic submerged in the marine environment. Applied and environmental microbiology. 1981. V. 41. № 1. P. 268–273.

Chiba S., Saito H., Fletcher R., Yogi T., Kayo M., Miyagi S., Ogido M., Fujikura K. Human footprint in the abyss: 30 year records of deep-sea plastic debris. Marine Policy. 2018. Vol. 96. P. 204–212. DOI: 10.1016/j.marpol.2018.03.022.

Clarke R.N., Gorley P.J., Somerfield R.M. Warwick Change in marine communities: an approach to statistical analysis and interpretation (3nd edition). Plymouth, PRIMER-E, 2014.

Collard F., Ask A. Plastic ingestion by Arctic fauna: A review. Science of The Total Environment. 2021. Vol. 786. DOI: 10.1016/j.scitotenv.2021.147462.

Eich A., Mildenberger T., Laforsch C., Weber M. Biofilm and diatom succession on polyethylene (PE) and biodegradable plastic bags in two marine habitats: early signs of degradation in the pelagic and benthic zone? PLoS one. 2016. Vol. 10. Iss. 9. P. 1–16. DOI: 10.1371/journal.pone.0137201.

Eryaşar A.R., Gedik K., Şahin A., Öztürk R.C., Yılmaz F. Characteristics and temporal trends of microplastics in the coastal area in the Southern Black Sea over the past decade. Marine Pollution Bulletin. 2021. Vol. 173. Part A. P. 1–8. DOI: 10.1016/j.marpolbul.2021.112993.

Esensoy F.B., Şentürk Y., Aytan Ü. Microbial biofilm on plastics in the southeastern Black Sea. Marine Litter in the Black Sea / eds. Ü. Aytan, M. Pogojeva, A. Simeonova. Istanbul, Turkey: Turkish Marine Research Foundation (TUDAV), 2020. No: 56. P. 268–286.

González-Pleiter M., Lacerot G., Edo C., Pablo Lozoya J., Leganés F., Fernández-Piñas F., Rosal R., Teixeira-de-Mello F. A pilot study about microplastics and mesoplastics in an Antarctic glacier. The Cryosphere. 2021. Vol. 15. P. 2531–2539. DOI: 10.5194/tc-15-2531-2021.

Guiry M.D., Guiry G.M. AlgaeBase. World–wide electronic publication. National University of Ireland, Galway. 2021. URL: http://www.algaebase.org (дата звернення: 28.11.2021).

Harrison J.P., Schratzberger M., Sapp M., Osborn A.M. Rapid bacterial colonization of lowdensity polyethylene microplastics in coastal sediment microcosms. BMC Microbiol. 2014. Vol. 14, 232. DOI: 10.1186/s12866-014-0232-4.

John J., Nandhini A.R., Padmanaban V.C., Sillanpää M. Microplastics in mangroves and coral reef ecosystems: a review. Environmental Chemistry Letters. 2021. DOI: 10.1007/s10311-021-01326-4.

Lobelle D., Cunliffe M. Early microbial biofilm formation on marine plastic debris. Marine Pollution Bulletin. 2011. Vol. 62. P. 197–200. DOI: 10.1016/j.marpolbul.2010.10.013.

Moncheva S., Stefanova K., Krostev A., Apostolov A., Bat L., Sergin M., Sahin F., Timofte F. Marine Litter Quantification in the Black Sea: A Pilot Assessment. Turkish Journal of Fisheries and Aquatic Sciences. 2016. V. 15. № 1. P. 22–29. DOI: 10.4194/1303-2712-v16_1_22.

Novosel N., Mišić Radić T., Zemla J., Lekka M., Čačković A., Kasum D., Legović T., Žutinić P., Gligora Udovič M., Ivošević DeNardis N. Temperature-induced response in algal cell surface properties and behaviour: an experimental approach. Journal of Applied Phycology. 2021. DOI: 10.1007/s10811-021-02591-0.

Oberbeckmann S., Loeder M.G.J., Gerdts G., Osborn A.M. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiology Ecology. 2014. Vol. 90. P. 478–492. DOI: 10.1111/1574-6941.12409.

Odobel C., Dussud C., Philip L., Derippe G., Lauters M., Eyheraguibel B., Burgaud G., Ter Halle A., Bruzaud S., Barbe V., Ghiglione J.-F. Bacterial abundance, diversity and activity during long-term colonization of nonbiodegradable and biodegradable plastics in seawater. Frontiers in Microbiology. 2021. Vol. 12. DOI: 10.3389/fmicb.2021.734782.

Sapozhnikov P., Salimon A., Korsunsky A.M., Kalinina O., Ilyina O., Statnik E., Snigirova A. Plastic in the aquatic environment: interactions with microorganisms. Plastics in the aquatic environment – part I: current status and challenges / eds. Stock F. et al. Springer: Berlin, 2021. P. 197–254. DOI: 10.1007/698_2021_747.

Snigirova A., Uzun E., Portyanko V. Colonizing of bottom marine litter by benthic organisms in the northwestern Black Sea (Gulf of Odessa). Marine Litter in the Black Sea / eds. Ü. Aytan, M. Pogojeva, A. Simeonova. Istanbul, Turkey: Turkish Marine Research Foundation (TUDAV), 2020. № 56. P. 247–267.

Snigirova A.A., Kurakin A.P. Microalgae on the plastic substrates in the coastal area of the Gulf of Odessa (the Black Sea). Advances in Modern Phycology. 2019. P. 103–105.

Snigirova A.A., Aleksandrov B.G. Patterns of sand fractions influence on microalgae of the marine coast. Science Rise. 2015. Vol. 4. № 1. P. 20–26. DOI: 10.15587/2313-8416.2015.41503.

Suaria G., Melinte-Dobrinescu M.C., Ion G., Aliani S. First observations on the abundance and composition of floating debris in the North-western Black Sea. Marine Environmental Research. 2015. V. 107. P. 45–49. DOI: 10.1016/j.marenvres.2015.03.011.

Terzi Y., Erüz C., Özşeker K. Marine litter composition and sources on coasts of south-eastern Black Sea: A long-term case study. Waste Management. 2020. V. 105. P. 139–147. DOI: 10.1016/j.wasman.2020.01.032.

Tong C.Y., Derek J.C.C. Physiology of microalgal biofilm: a review on prediction of adhesion on substrates. Bioengineered. 2021a. Vol. 12. № 1. P. 7577–7599. DOI: 10.1080/21655979.2021.1980671.

Tong C.Y., Derek J.C.C. The role of substrates towards marine diatom Cylindrotheca fusiformis adhesion and biofilm development. Journal of Applied Phycology. 2021b. Vol. 33. № 2. DOI: 10.1007/s10811-021-02504-1.

Tong C.Y., Shi C.Y., Seng O.B., Derek J.C.C. Physico-chemistry and adhesion kinetics of algal biofilm on polyethersulfone (PES) membrane with different surface wettability. Journal of Environmental Chemical Engineering. 2021. Vol. 9. Iss. 6. DOI: 10.1016/j.jece.2021.106531.

Wang J., Qin X., Guo J., Jia W., Wang Q., Zhang M., Huang Y. Evidence of selective enrichment of bacterial assemblages antibiotic resistant genes by microplastics in urban rivers. Water Research. 2020. Vol. 183. DOI: 10.1016/j.watres.2020.116113.

Published

2023-05-08