ERYTHROID ELEMENTS OF HEMOLYMPH IN ANADARA INAEQUIVALVIS (MOLLUSCA: ARCIDAE) UNDER CONDITIONS OF EXPERIMENTAL ANOXIA: FUNCTIONAL AND MORPHOMETRIC CHARACTERISTICS
Keywords:
anoxia, Anadara inaequivalvis, hemolymph, erythrocyte morphology, cytometry, osmotic resistanceAbstract
Influence of anoxia (exposure – 3 days) on functional, morphologic and cytometrical characteristics of hemolymph erythroid elements of bivalve mollusc Anadara inaequivalvis (Bruguiere, 1789) was investigated in experimental conditions Anoxia caused the hydration of cytoplasm and swelling of erythroid elements. The pattern of changes in erythrocyte indices (MCV, MCH, MCHC) and geometric parameters of cells confirmed that phenomenon. It was accompanied by a lysis of predominantly old cellular forms with lower osmotic resistance. Destruction of old erythroid forms resulted in relative increase in content of cells of earlier generation in the hemolymp which led to an increase in mean cell volume of a nucleus, content of basophilic granular inclusions in cytoplasm and stability of erythroid elements of the mollusc to osmotic shock.
References
Золотницкая Р. П. Методы гематологических исследований / Лабораторные методы исследования в клинике (справочник). – М.: Медицина, 1987. – С. 106 – 148.
Парфенова И. А, Солдатов А. А. Эритрограмма циркулирующей крови скорпены в условиях экспериментальной гипоксии // Морск. экол. ж. – 2005. – 4, N2. – С. 59 - 67.
Савина М. В. Механизмы адаптации тканевого дыхания в эволюции позвоночных. – С.-Петербург: Наука, 1992. – 200 с.
Солдатов А. А. Цитохромная система и напряжение кислорода в мышечной ткани морских рыб различной естественной активности // Ж. эволюц. биохим. физиол. – 1996. – 32 , N2. – С.142 - 146.
Солдатов А. А., Русинова О. С., Трусевич В. В., Звездина Т. Ф. Влияние гипоксии на биохимические показатели эритроцитов скорпены // Укр. биохим. журн. – 1994. – 66, 5. – С.115 - 118.
Ташкэ К. Введение в количественную цитогистологическую морфологию. – Бухарест: Изд-во Академии Респ. Румынии, 1980. – 291 с.
Шульман Г. Е., Аболмасова Г. И., Столбов А. Я. Использование белка в энергетическом обмене гидробионтов // Усп. совр. биол. – 1993. – 113. – С. 576 – 586.
Arndt-Sullivan C., Lechaire J-P., Felbeck H. Extreme tolerance to anoxia in the Lucinoma аequizonata symbiosis // J. Shellfish Research. – 2008. – 27, N 1. – P. 119 – 127.
Boutilier R. G., Ferguson R. A. Nucleated red cell function: metabolism and pH regulation // Can. J. Zool. – 1989. – 67, N 12. – P. 2986 – 2993.
Chew S. F., Gan J., Ip Y. K. Nitrogen metabolism and excretion in the swamp eel, Monopterus albus, during 6 or 40 days of estivation in mud // Physiol. Biochem. Zool. – 2005. – 78. – P. 620 - 629.
Holden J. A., Pipe R. K., Quaglia A., Ciani G. Blood cells of the arcid clam, Scapharca inaequivalvis // J. Mar. Biol. Assoc. U.K. – 1994. – 74, N 2. – P. 287 - 299.
Hughes G. M., Johnston I. A. Some responses of the electric ray (Torpedo marmorata) to low ambient oxygen tensions // J. Exp. Biol. – 1978. – 73. – P. 107 – 117.
Jensen F. B. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport (review) // Acta Physiol. Scand. – 2004. – 182, N 3. – P. 215 – 227.
Lai J. C. C., Kakuta I., Mok H. O. L., Rummer J. L., Randall D. Effects of moderate and substantial hypoxia on erythropoietin level in rainbow trout kidney and spleen // J. Exp. Biol. – 2006. – 209. – P. 2734 – 2738.
Lane H. C., Tianang D. Effect of hypoxia and hyperoxia on rainbow trout red cells // Amer. Zool. – 1992. – 32, N 5. – P. 170 A.
Lee A-C., Lee M-C., Lee Y-H. Candidates for a hypoxia-stress indicator in the hard clam, Meretrix lusoria // Aquaculture. – 2008. – 278, N 1-4. – P. 150 – 155.
Mommsen Th. P., French C .J., Hochachka P. W. Sites and patterns of protein and amino acid utilization during spawning migration of s almon // Can. J. Zool. – 1980. – 58. – P. 1785 – 1799.
Nikinmaa M. Adrenergic control of oxygen transport in salmonids // Fischerei-Forschung. – 1991. – 29, N 3. – P. 64 – 65.
Owen T. G., Hochachka P. W. Purification and properties of dolphin muscle aspartate and alanine transaminases and their possible roles in the energy metabolism of diving mammals // Biochem. J. – 1974. – 143. – P. 541 – 553.
Perry S. F., Montpetit C. J., Julio A. E., Moore K. The influence of chronic anaemia on catecholamine secretion in the rainbow trout (Oncorhynchus mykiss) // J. Comp. Physiol. – 1999. – 169, N 4/5. – P. 335 – 343.
Perry S. F., Reid S. G. The effects of acclimation temperature on the dynamics of catecholamine release during acute hypoxia in the rainbow trout Oncorhynchus mykiss // J. Exp. Biol. – 1994. – 186. – P. 289 – 307.
Phillips M. C. L., Moyes C. D., Tufts B. L. The effects of cell ageing on metabolism in rainbow trout (Oncorhynchus mykiss) red blood cells // J. Exp. Biol. – 2000. – 203, N 6. – P. 1039 – 1045.
Waarde A. Biochemistry of non-protein nitrogenous compounds in fish including the use of amino acids for anaerobic energy production // Comp. Biochem. Physiol. – 1988. – 91B. – P. 207 - 228.
Wickramasinghe S. N. Erythropoietin and the human kidney: evidence for an evolutionary link from studies of Salmo gairdneri // Comp. Biochem. Physiol. – 1993. – 104A. – P. 63 - 65.
Wootton E. C., Dyrynda E. A., Ratcliffe N. A. Bivalve immunity: comparisons between the marine mussel (Mytilus edulis), the edible cockle (Cerastoderma edule) and the razor-shell (Ensis siliqua) // Fish & Shellfish Immunology. – 2003. – 15, N 3. – P. 195 – 210.
Zwaan A., Cortesi P., Thillart G., Storey K. B. Differential sensitivities to hypoxia by two anoxiatolerant marine molluscs: A biochemical analysis// Mar. Biol. – 1991. – 111, N 3. – P. 343 – 351.
Zwaan. A., Schaub B. E. M., Babarro J. M. F. Anoxic survival of Macoma balthica: the effect of antibiotics, molybdate and sulphide // J. Exp. Mar. Biol. Ecol. – 2001. – 256. – P. 241 – 251.