APPLYING THE PARADIGM OF ENERGY BALANCE TO MICROBIAL FOOD WEB IN AQUATIC ECOSYSTEMS

Authors

  • V. S. Mukhanov

Keywords:

energy balance, energy and matter flows, respiration, respirometry, heat dissipation, microcalorimetry, nanocalorimetry, microbial loop, aquatic ecosystems

Abstract

A revision of the current paradigm of the energy flow in aquatic ecosystems (and, in particular, microplankton) is required as the latter is based on a few false assumptions, namely: (i) the energy flow is coupled exceptionally to trophic processes (“trophic energy flow”); (ii) aerobic respiration is the only catabolic process in the oxic water column; (iii) intracellular metabolism is the only source of heat energy dissipated by water sample. Almost no progress in developing the energy flow paradigm was observed for the last decades, likely owing to imperfections in the methodology for measuring the energy flow directly as heat dissipation. There is a considerable gap in the data on in situ physiological activity of planktonic microorganisms, which is filled with indirect estimates of their metabolic rates approximated from material flows (like production). This prevalent approach provides no valuable information on the real metabolic rate but produces its fallacious estimates as the net growth efficiency (K2) is not actually measured in the same experiment. In microplankton studies, an extensive approach prevails in which integral respiration measurements are favored over estimates of metabolic fluxes per cell, biovolume and biosurface. This limits our knowledge of physiological activity of planktonic microorganisms and, besides, deprives the researcher an opportunity to verify the results obtained. Doubt has been recently thrown on the validity of the respirometric estimates of the energy flows in aquatic ecosystems and, consequently, there exist a demand on alternative methodological approaches to solve the problem. Applying nanocalorimetry in the field of hydrobiology looks promising as a highly sensitive method for measuring directly the heat dissipation by native microplankton, without any cell pre-concentration. Modern knowledge of the viral loop, physiology of ultramicrobacteria, and bacteria-mediated extracellular hydrolysis of biopolymers have to be taken into account to calculate detailed energy budget of microplankton.

References

Алимов А. Ф. Исследования биотических балансов экосистем пресноводных водоемов в СССР // Гидробиол. журн. – 1987. – 23, № 6. – С. 7 – 10.

Бульон В. В. Закономерности первичной продукции в лимнических экосистемах. – СПб.: Наука, 1994. – 222 с.

Винберг Г. Г. Некоторые общие вопросы продуктивности озер // Зоол. журн. – 1936. – 15, №. 4. – С. 587 – 603.

Винберг Г. Г. Зависимость энергетического обмена от массы тела у водных пойкилотермных животных // Журн. общ. биол. – 1976. – 37, № 1. – С. 56 – 70.

Заика В. Е. Сравнительная продуктивность гидробионтов. – Киев: Наук. думка, 1983. – 206 c.

Заика В. Е., Шевченко В. А., Булатов К. В. Экология морского фототрофного пикопланктона. – М.: Научный центр биологических исследований АН СССР в Пущине, 1989 – 168 с.

Зенкевич Л. А. Продуктивность морских водоемов СССР // Тр. фаунист. конф. Зоологического ин-та АН СССР. – Л.: Секция гидробиол., 1934. – С. 11 – 18.

Ивлев В. С. О превращении энергии при росте беспозвоночных // Бюлл. МОИП. Отд. биол. – 1938. – 47, № 4. – С. 267 – 277.

Лебедева М. Н., Чепурнова Э. А., Шумакова Г. В. Интенсивность размножения и скорость дыхания бактериальных сообществ из различных районов Атлантики и Средиземного моря. / Экс-периментальные исследования в южной Атлантике и Средиземном море. – К., 1975. – Ч. 3. – С. 217 – 230.

Лебедева М. Н. Бактериопланктон и его роль в биопродукционных процессах // Грезе В.Н. Основы биологической продуктивности Черного моря. – Киев: Наук. думка, 1979. – С. 183 – 199.

Муханов В. С. Теплопродукция морского пико- и фемтопланктона: автореф. дисс.…канд. биол. наук. – Севастополь, 2007. – 24 с.

Муханов В. С., Рылькова О. А., Лопухина О. А. Диссипация энергии, продуктивность и скорость оборота биомассы в сообществе бактериопланктона: сравнительные исследования двух водных экосистем. // Экология моря. – 2000. – Вып. 52. – С. 12 – 17.

Петипа Т. С. Трофодинамика копепод в морских плакнтонных сообществах. – Киев: Наук. думка, 1981. – 245 с.

Чепурнова Э. А., Шумакова Г. В., Бучакчийская А. Н. Размерная структура морского бактериопланктона по результатам измерения клеток на на мембранных ультрафильтрах "Сынпор - 6" и "Сынпор-7" // Микробиология. – 1988. – 57, № 1. – С. 146 – 151.

Чепурнова Э. А., Шумакова Г. В., Гутвейб Л. Г. Бактериопланктон / Планктон Черного моря. – Киев: Наук. думка, 1993. – С. 110 – 142.

Шумакова Г. В. Сезонная динамика дыхания бактериопланктона в Севастопольской бухте // Экология моря. – 1987. – Вып. 9. – С. 25 – 29.

Aoki I. Entropy production of living systems from organisms to ecosystems / Proc. 9th ISBC Conf. “Calorimetry and thermodynamics of biological processes” (Berlin, 27-31 May 1994). – Berlin, 1994. – P. 114.

Azam F., Fenchel T., Field J. G. The ecological role of watercolumn microbes in the sea // Mar. Ecol. Prog. Ser. – 1983. – Vol. 10. – P. 257 – 263.

BioActivity Monitoring Seminar Notes. – № 90 01 8697. – P. 87 – 88.

Blight S. P., Bentley T. L., Lefevre D. Phasing of autotrophic and heterotrophic plankton metabolism in a temperate coastal ecosystem. // Mar. Ecol. Prog. Ser. – 1995. – 128. – P. 61 – 75.

Boysen-Yensen P. Valiation of the Limfyiord // I. Rep. Dan. bion. sta. – 1919. – 26, № 1. – P. 1 – 44.

Cho B. C., Azam F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior // Nature. – 1988. – 332. – P. 441 – 443.

Christensen V., Walters C. J. Ecopath with Ecosim: methods, capabilities and limitations // Ecol. Model. – 2004. – 172. – P. 109 – 139

Del Giorgio P. A., Williams P. J. leB. Respiration in Aquatic Ecosystems. – NY: Oxford Univ. Press, 2005. – 315 p.

Duboc P., Marison I., von Stockar U. Quantitative calorimetry and biochemical engineering. / Gal-lagher P. (ed.) Handbook of Thermal Analysis and Calorimetry. / Kemp R. B. (ed.) From macromolecules to man. –Amsterdam: Elsevier, 1999. – 4. – P. 267 – 365.

Falkowski P. G., Barber R. T., Smetacek V. Biogeochemical controls and feedbacks on ocean primary production // Science. – 1998. – 281. – P. 200 – 206.

Fowler S. W., Knauer G. A. Role of large particles in the transport of elements and organic compounds through the oceanic water column // Prog. Ocean. – 1986. – 16. – P. 147 – 194.

Gazol J. M., del Giorgio P. A., Massana R. Active versus inactive bacteria: size-dependence in a coastal marine plankton community. // Mar. Ecol. Prog. Ser. – 1995. – 128. – P. 91 – 97.

Gnaiger E., Kemp R. B. Anaerobic metabolism in aerobic mammalian cells: information from the ratio of calorimetric heat flux and respirometric oxygen flux // Biochim. Biophys. Acta. – 1990. – 1016. – P. 328 – 338.

Guosheng L., Yi L., Xiangdong C., Peng L. Study on interaction between T4 phage and Escherichia coli B by microcalorimetric method // J. virol. Me-thods. – 2003. – 112, № 1-2. – P. 137 – 143.

Hoppe H. G. Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria. / Kemp P. F., Sherr B., Sherr E., Cole J. J. (eds.) Handbook of methods in aquatic microbial ecology. – Boca Raton: Lewis Publishers, 1993, – P. 423 – 432.

Ivlev V. S. Eine Mikromethode zur Bestimmung des Kaloriengehalts von Nhrstoffen // Biochem. Z. – 1934. – 275. – P. 49 – 55.

Kapustina L. L. Bacterioplankton response to eutrophication in Lake Ladoga / Simola H., Viljanen M., Slepukhina T., Murthy R. (eds.) Ecologocal Problems Of-Lake Ladoga. Proc. 1st Intern. Lake Ladoga Symp. (St.-Peterb., 22-26 Nov. 1993). – St.-Peterb. – 1996. – 322. – P. 17 – 22.

Kemp R. B. Heat dissipation in mammalian cells / Bittar E. E., Bittar N. (eds.) Principles of Medical Biology. – Greenwich: JAI Press, 1996. – 4. – Part III. – P. 303 – 329.

Kemp W. M., Boynton W. R. Productivity, trophic structure, and energy flow in the steady-state ecosystems of Silver Springs, Florida // Ecol. Modelling. – 2004. – 178. – P. 43 – 49.

Kirchman D. L. Measuring bacterial biomass production and growth rates from leucine incorporation in natural aquatic environments. / Paul J. H. (ed.) Methods in microbiology. Marine microbiology. – San Diego: Acad. Press, 2001. – 30. – P. 227 – 238.

Larsson B., Gustafsson L. Calorimetry of microbial processes / Gallagher P. (ed.) Handbook of Thermal Analysis and Calorimetry. / Kemp R.B. (ed.) From macromolecules to man. Amsterdam: Elsevier, 1999. – 4. – P. 367 – 404.

Lindeman R. L. The trophic-dynamic aspect of ecology // Ecology. – 1942. – 23, № 4. – P. 399 – 418.

Lopukhin A., Kamenir Yu. Size spectra of heat production of Sevastopol Bay microplankton // Thermochim. Acta. – 1995. – 251. – P. 53 – 61.

Møller E. F., Nielsen T. G. Plankton community structure and carbon cycling off the western coast of Greenland, with emphasis on sources of DOM for the bacterial community // Aquat. Microb. Ecol. – 2000. – 22. – P. 13 – 25.

Mukhanov V. S., Anesio A. M., Kemp R. B. Viral control of material flows, the energy budget and the efficiency of the planktonic microbial loop in the coastal waters of Cardigan bay // Proc. Int. Conf. “Aquatic Ecology at the Dawn of XXI Century” in honor of the 100th anniv. of Prof. G. G. Winberg (St. Petersburg, Russia, 3-7 Oct. 2005). – St. Petersburg, 2005. – P. 37.

Mukhanov V. S., Hansen L. D., Kemp R. B. Nanocalorimetry of respiration in micro-organisms in natural waters // Thermochim. Acta. – 2012. – 531. – P. 66 – 69.

Mukhanov V. S., Kemp, R. B. Microcalorimetry of the smallest plankton fraction: In search for the sources of heat dissipation // Морс. екол. журн. (Mar. Ecol. J.). – 2005. – Спец. вип. 1. – С. 84 – 98 (in English).

Mukhanov V. S., Naidanova O. G., Lopukhina O. A. Cell-, biovolume- and biosurface-specific energy fluxes through marine picoplankton as a function of the assemblage size structure // Thermochim. Acta. – 2007. – 458. – P. 23 – 33.

Mukhanov V. S., Naidanova O. G., Shadrin N. V. The spring energy budget of the algal mat community in a Crimean hypersaline lake determined by microcalorimetry. // Aquat. Ecol. – 2004. – 38. – P. 375 – 385.

Mukhanov V. S., Rylkova O. A., Lopukhina O. A. Productivity and thermodynamics of marine bacterioplankton: an inter-ecosystem comparison. // Thermochim. Acta. – 2003. – 397. – P. 31 – 35.

Nagata T. Production mechanisms of dissolved organic matter / Kirchman D. L. (ed.) Microbial ecology of the oceans. – New York: Wiley-Liss, 2000. – P. 121 – 152.

Núñez-Regueira L., Núñez-Fernández O., Rodríguez Añón J. A. The influence of some physicochemical parameters on the microbial growth in soils. // Thermochim. Acta. – 2002. – 394. – P. 123 – 132.

Paffenhofer G.- A., Sherr B. F., Sherr E. B. From small scales to the big picture: persistence mechanisms of planktonic grazers in the oligotrophic ocean // Marin. Ecol. – 2007. – 28. – P. 243.

Pamatmat M. M. Non-photosynthetic oxygen production and non-respiratory oxygen uptake in the dark: a theory of oxygen dynamics in plankton communities. // Mar. Biol. – 1997. – 129. – P. 735 – 746.

Pamatmat M. M. Heat-flow measurements in aquatic ecosystems. // J. Plankton Res. – 2003. – 25. – P. 461 – 464.

Pamatmat M. M., Graf G., Bengtsson W. Heat production, ATP concentration and electron transport activity of marine sediments // Mar. Ecol. Progr. Ser. – 1981. – 4. – P. 135 – 143.

Pomeroy L. R. The ocean's food web, a changing paradigm // BioScience. – 1974. – 24. – P. 499 – 504.

Pomeroy L. R., Wiebe W. J. Energetics of microbial food webs // Hydrobiologia. – 1988. – 159. – P. 7 – 18.

Rigler F. H. The concept of energy flow and nutrient flow between trophic levels / van Dobben W.H., Lowe-McConnell R.H. (eds.) Unifying con-cepts in ecology. – The Hague: Dr W. Junk B.V. Publishers, 1975. – P. 15 – 26.

Robinson C., Archer S. D., Williams P. J. Microbial dynamics in coastal waters of East Antarctica: Plankton production and respiration // Mar. Ecol. Prog. Ser. – 1999. – 180. – P. 23 – 36.

Runge J. A., Ohman M. D. Size fractionation of phytoplankton as an estimate of food available to herbivores // Limnol. Oceanogr. – 1982. – 27, № 3. – P. 570 – 576.

Watson R., Alder J., Walters C. A dynamic mass-balance model for marine protected areas // Fish and Fisheries. – 2000. – 1, № 1. – P. 94 – 98.

Whitman W., Coleman D., Wiebe W. Prokaryotes: the unseen majority // Proc. Nat. Acad. Sci. USA. – 1998. – 95. – P. 6578 – 6583.

Winberg G. G. 1956. Rate of metabolism and food requirements of fishes // Transl. Fish. Res. Board Can. – 1956. – 194. – P. 1 – 253.

Wommack K. E., Colwell R. R. Virioplankton: Viruses in aquatic environments // Microb. Molec. Biol. Rev. – 2000. – 64. – P. 69 – 114.

Published

2023-05-15