ЕМІСІЯ МЕТАНУ В ГІДРО - І АТМОСФЕРУ СТРУМИННИМИ ВИХОДАМИ ГАЗУ У РАЙОНІ ПАЛЕО-ДЕЛЬТИ Р. ДНІПР У ЧОРНОМУ МОРІ

Автор(и)

  • Ю. Г. Артемов
  • В. М. Єгоров
  • Г. Г. Полiкарпов
  • С. Б. Гулін

Ключові слова:

Чорне море, палео-русло р. Дніпр, струминні виходи метану, потік метану

Анотація

Для оцінювання потоку метану від струминних виходів газу (сипів) був застосований комбінований підхід, включаючий здійснення докладної акустичної зйомки досліджуваного району й аналіз даних з використанням спеціалізованого програмного забезпечення, технології ГІС і методів математичного моделювання. Отримана докладна мапа розподілу метанових сипів у районі палео-русла р. Дніпр. Разом на площі 387.1 км2, обстеженої у цьому районі, ідентифіковано 2200 сипів, виділяючих 16.7 106 м3 при атмосферному тиску (STP), або 12.0 10-3 тераграм (Тг) метану щорічно. Статистичний розподіл індивідуальних потоків метану від сипів відповідає логнормальному закону. За нашими оцінками, 1.9 % метану струминних виходів газу досягають атмосфери у газоподібному стані, але 98.1% розчиняються у водному стовпі. Таким чином, переважна частина метану залишається у морській воді та включається у фізичні, хімічні і біологічні процеси трансформації вуглемістячих сполук.

Посилання

Геворкьян В. Х., Бураков В. И., Исагулова Ю. К. и др. Газовыделяющие постройки на дне северо-западной части Черного моря // Докл. АН УССР. – 1991. – № 4. – С. 80 – 85.

Егоров В.Н. Поликарпов Г.Г., Гулин М.Б., Артемов Ю.Г,Стокозов Н. А., Гулин С.Б. Влияние струйных метановых газовыделений из дна Черного моря на мелкомасштабные процессы вертикального перемешивания вод // Доп. НАНУ. – 1999. – № 8. – С. 186 – 190.

В. Н. Егоров, Г. Г. Поликарпов, С. Б. Гулин, Ю. Г. Артемов, Н. А. Стокозов, С. К. Костова. Современные представления о средообразующей и экологической роли струйных метановых газовыделений со дна черного моря.// Морск. экол. журн. - 2003. – 2, 3. – C. 5 – 26.

Иванов М. В., Поликарпов Г. Г., Леин А. Ю. и др. Биогеохимия цикла углерода в районе метановых газовыделений Черного моря // Докл. АН СССР. – 1991. – 3, № 5. – С. 1235 – 1240.

Леин А. Ю., Иванов М. В., Пименов Н. В. Генезис метана холодных метановых сипов днепровского каньона в Черном море // Докл. РАН. – 2002. – 387, № 2. – С. 242 – 244.

Полiкарпов Г. Г., Егоров В. М. Виявлено активнi газовидiлення з дна Чорного моря // Вiсн. АН УРСР. – 1989. – № 10. – С. 108 – 111.

Поликарпов Г. Г., Егоров В. Н., Нежданов А. И. и др. Явление активного газовыделения из поднятий на свале глубин западной части Черного моря // Докл. АН УССР. – 1989. – Сер. Б, № 12. – С. 13 – 15.

Поликарпов Г. Г., Егоров В. Н., Гулин С.Б. и др. Газовыделения со дна Черного моря - новый объект молисмологии // Молисмология Чёрного моря. – Киев: Наук. думка, 1992. – С. 5 –10.

Поликарпов Г. Г., Иванов М. В., Гулин С. Б., Гулин М. Б. Депонирование углерода метана в карбонатных бактериальных постройках на свале глубин сероводородной зоны Черного моря // Докл. НАН Украины. – 1993. – № 7. – С. 93 – 94.

Шнюков Е. Ф., Соболевский Ю. В., Кутний В. А. Необычные карбонатные постройки континентального склона северо-западной части Черного моря – вероятное следствие дегазации недр // Литология и полезные ископаемые. – 1995. – № 5. – С. 541 – 561.

Шнюков Е. Ф., Пасынков А. А., Клещенко С. А. и др. Газовые факелы на дне Черного моря. - Киев, 1999.— 134 с.

Шнюков Е. Ф., Старостенко В. И., Гожик П. Ф. и др. О газоотдаче дна Черного моря // Геологич. журн. – 2001. – С. 7 - 14.

Шнюков Е. Ф., Клещенко С. А., Артемов Ю. Г. Новое поле газовых факелов в западной части Черного моря // Геофиз. журн. – 2003. – № 2. – С. 153 - 160.

Alves S. S., Orvalho S. P., Vasconcelos J. M. T. Effect of bubble contamination on rise velocity and mass transfer // Chem. Eng. Sci. – 2005. – 60. – P. 1 - 9.

Artemov, Yu. G. Software support for investigation of natural methane seeps by hydroacoustic method // Mar. Ecol. J. – 2006. – 5, no. 1. – P. 57 - 71.

Artemov Yu. G. Modeling of natural methane bubbles in the Black Sea environment. (in prep).

Bodholt H. Variance error in echo integration output // Rapp. P.-v. Reun. Cons. perm. Int. Explor. Mer. – 1977. – 170. – P. 196 - 204.

Clark J. F., Leifer I., Washburn L., Luyendyk B. Compositional changes in natural gas bubble plumes: observations from the Coal Oil Point marine hydrocarbon seep field // Geo-marine Letters. – 2004. – 23. – P. 187 - 193.

Clay C.S., Medwin H. Acoustical oceanography: principles and applications //John Wiley & Sons, N. Y. – 1977. – 544 p.

Clift, R., Grace J. R, Weber M. E.. Bubbles, Drops, and Particles // Elsevier, N. Y.– 1978. – 380 p.

Cranston R.E. Marine sediments as a source of atmospheric methane // Bull. Geol. Soc. Denmark. – 1994. – 14. – P. 101 - 109.

Cranston R.E, Ginsburg G.D, Soloviev V.A, Lorenson TD. Gas venting and hydrate deposits in the Okhotsk Sea // Bull. Geol. Soc. Denmark. – 1994. – 41. – P. 80 - 85.

Dando, P. R., Jensen P., O’Hara S. C. M. et al. The effects of methane seepage at an intertidal/shallow subtidal site on the shore of the Kattegat, Vendsyssel, Denmark // Bull. Geol. Soc. Denmark. – 1994. – 41. – P. 65 - 79.

Dimitrov L. I. Characteristics of gas-acoustic anomalies on the South Bulgarian Black Sea shelf // Oceanology. – 1989. – 19. – Р. 34 - 41. (in Bulgarian).

Dimitrov L. Contribution to atmospheric methane by natural gas seepages on the Bulgarian continental shelf // Continental Shelf Researches. – 2002. – 22. – Р. 2429 - 2442.

Egorov V. N., Luth U., Luth C., Gulin M. B. Gas seeps in the submarine Dniepr paleo-delta, Black Sea: Acoustic, video and trawl data // Luth U., Luth C., Thiel H. Berichte aus den ZMK, Reihe E. – Hamburg: Hamburg University. – 1998. –14. – P. 11 - 22.

Foote K. G. Linearity of fisheries acoustics with addition theorems // J. Acoust. Soc. America. – 1983. – 73 (6). – P. 1932 - 1940.

Frumkin, A., Levich, V.G. On surfactants and interfacial motion // Zhurnal Fizicheskoi Khimii. – 1947. – 21. – P. 1183 - 1204 (in Russian).

Gulin S.B., Polikarpov G.G., Egorov V.N. The age of microbial carbonate structures grown at methane seeps in the Black Sea with an implication of dating of the seeping methane // Marine Chemistry. – 2003. – 84, no. 1 - 2. – P. 67 - 72.

Gulin S. B., Greinert J., Egorov V. N. et al. Observation of microbial carbonate build-ups growing at methane seeps near the upper boundary of the gashydrate stability zone in the Black Sea // Mar. Ecol. J. – 2005. – 4, no. 3. – P. 5 - 14.

Hornafius J. S., Quigley D. C., Luyendyk B. P. The world’s most spectacular marine hydrocarbons seeps (Coal Oil Point, Santa Barbara Channel, California): Quantification of emissions // J. Geophys. Res. – 1999. – 104, C9. – P. 20703 - 20711.

Houghton J.T., Ding Y., Griggs D.J., Noguer M., et al. Climate Change 2001: The Scientific Basis // Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge. – 2001. – 944 p.

Hovland M., Judd A.G. Seabed Pockmarks and Seepages: Impact on Geology, Biology and the Marine Environment // Graham & Trotman, London. – 1988. – 293 p.

Hovland M., Judd A.G., Burke R.A. The global production of methane from shallow submarine sources // Chemosphere. – 1993. – 26. – P. 559 -78.

Hunter K. A. Chemistry of the sea-surface microlayer. In The sea surface and global change (ed. L. P.S. and R. A. Duce). Cambridge Univ. Press, 1997.

Intergovernmental Panel on Climate Change Climate. Change 2001—The Scientific Basis, 881 pp., Cambridge Univ. Press, New York, 2001. P. 775 – 778, doi:10.1038/44545.

Ivanov M.V., Pimenov N.V., Rusanov I.I., Lein A.Y. Microbial processes of the methane cycle at the north-western shelf of the Black Sea, Estuar. Coast. Shelf Sci. 54 (2002) 589–599.

Judd A.G., Davies G., Wilson J. et al. Contributions to atmospheric methane by natural seepages on the UK continental shelf // Marine Geology. – 1997. – 137. – P. 165 - 189.

Judd A., Charlier R., Larox A., Lambert G., Rouland C. Minor sources of methane. Atmospheric Methane, Sources, Sinks and Role in the Global Change // NATO ASI Series, Series I: Global Environmental Change. – 1993. – 13. – P. 432 - 456.

Kessler J.D., Reeburgh W.S., Southon J. et al Basin-wide estimates of the input of methane from seeps and clathrates to the Black Sea // Earth and Planetary Science Letters. – 2006. – 243. – P. 366 - 375.

Kvenvolden K.A., Lorenson T.D., Reeburgh W.S. Attention turns to naturally occurring methane seepage // EOS (American Geophysical Union Transactions). – 2001. – 82. – P. 457.

Leifer I., Patro R. K. The bubble mechanism for methane transport from the shallow sea bed to the surface: A review and sensitivity study // Cont. Shelf Res. – 2002. – 22. – P. 2409 - 2428.

Levich V. G. Physicochemical Hydrodynamics // Prentice-Hall, Englewood Cliffs, NJ, 1962.– 591 p.

Lewis K., Marshall B. Seep faunas and other indicators of methane rich dewatering on New Zealand convergent margins // N. Z. J. Geol. Geophys. – 1996. – 39. – P. 181 - 200.

Luth C., Luth U., Gebruk A.V., Thiel H. Methane gas seeps along the oxic/anoxic gradient in the Black Sea: manifestations, biogenic sediment compounds and preliminary results on benthic ecology // Mar. Ecol. – 1999. – 20. – P. 221 - 249.

McGinnis D. F., Greinert J., Artemov Y. et al. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? // J. Geophys. Res. – 2006. – 111, no. C09007. – P. 1 - 15.

Merewether R., Olsson M. S., Lonsdale P. Acoustically detected hydrocarbon plumes rising from 2-km depths in Guaymas Basin, Gulf of California // J. Geophys. Res. – 1985. – 90, no. 4. – P. 3075 - 3085.

Michaelis W., Seifert R., Nauhaus K. et al. Microbial reefs in the Black Sea fuelled by anaerobic oxidation of methane // Science. – 2002. – 297. – P. 1013 1015.

Naudts L., Greinert J., Artemov Y. et al. Geological and morphological setting of 2778 methane seeps in the Dnepr paleo-delta, northwestern Black Sea // Mar. Geol. – 2006. – 227. – P. 177 - 199.

Patro R., Leifer I., Bowyer P.. Better bubble process modeling : Improved bubble hydrodynamics parameterization // In: Gas Transfer and Water Surfaces, Eds. M. Donelan, W. Drennan, E.S. Salzman, and R. Wanninkhof, AGU Monograph. – 2001. – 127. – P. 315 - 320.

Paull C. K., Ill W. U., Borowski W. S, Spiess F. N. Methanerich plumes on the Carolina continent rise associated with gas hydrates // Geology. – 1995. – 23. – P. 89 - 92.

Prather, M., Derwent R., Ehhalt D. et al. Other trace gases and atmospheric chemistry // In: Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, edited by J. T. Houghton et al., Cambridge Univ. Press, New York. – 1995. – P. 73 - 126.

Quigley D.C. Quantifying spatial and temporal variations in the distribution of natural marine hydrocarbon seeps in the Santa Barbara Channel, California // Masters Thesis, Department of Geological Sciences. University of California, Santa Barbara, CA. – 1997. – P. 95.

Rowland F. S. Methane and chlorocarbons in the earth’s atmosphere // Origins Life. – 1985. – 15. – P. 279 - 297.

Reeburgh W. S. Global methane biogeochemistry // In: The Atmosphere, edited by R. Keeling, Elsevier, New York. – 2003. – P. 65 - 69.

Sadhal S. S., Johnson R. E. Stokes flow past bubbles and drops partially coated with thin films. Part 1. Stagnant cap of surfactant film – exact solution // J. Fluid Mech. – 1983. – 126. – P. 237 - 250.

Schmale O., Greinert J., Rehder G.. Methane emission from high-intensity marine gas seeps in the Black Sea into the atmosphere // Geophys. Res. Lett. – 2005. – 32, no. L07609. – P. 1 - 4.

Simoneit B.R.T., Lonsdale P.F., Edmond J.M., Shanks W.C. III, 1990: Deep-water hydrocarbon seeps in Guaymas Basin, Gulf of California. Applied Geochemistry, 5, 41-49.

Simrad (1992), Simrad EK500 Scientific Echo Sounder Instruction Manual, Simrad Subsea P2170, Horten, Norway.

Thome R. E. Investigations into the relation between integrated echo voltage and fish density // Journal of the Fisheries Research Board of Canada. – 1971. – 28. – P. 1269 - 1273.

Urick R. J. Principles of underwater sound, 2nd edition. // New York, McGraw Hill. – 1975. – 384 p.

Vasconcelos, J. M. T., Orvalho S. P., Alves S. S.. Gas-liquid mass transfer to single bubbles: Effect of surface contamination // AIChE J. – 2002. – 48. – P. 1145 - 1154.

Vasconcelos J. M. T., Rodrigues J. M. L., Orvalho S. C. P. et al. Effect of contaminants on mass transfer coefficients in bubble column and airlift contactors // Chem. Eng. Sci. – 2003. – 58. – P. 1431 - 1440.

Washburn L., Clark J. F., Kyriakidis P. The spatial scales, distribution, and intensity of natural marine hydrocarbon seeps near Coal Oil Point, California // Mar. Pet. Geol. – 2005. – 22, no. 4. – P. 569 - 578.

Wilson R.D., Monaghan P.H., Osanik A. et al. Natural marine oil seepage // Science. – 1974. – 184. – P. 857 - 865.

Wüest A., Brooks N. H., Imboden D. M. Bubble plume modeling for lake restoration // Water Resour. Res. – 1992. – 28. – P. 3235 - 3250.

Zheng L., Yapa P. D. Modeling gas dissolution in deepwater oil/gas spills // J. Mar. Syst. – 2002. – 31. – P. 299 - 309.

Zimmermann S., Hughes R.G, Flügel H.J. The effect of methane seepage on the spatial distribution of oxygen and dissolved sulphide within a muddy sediment // Marine Geology. – 1997. – 137. – P. 149 - 157.

##submission.downloads##

Опубліковано

2023-05-29